scholarly journals Analysis of Oil Displacement Efficiency of Subsequent Water Flooding Reservoir by Polymer Flooding

Author(s):  
Jing Sun
2014 ◽  
Vol 675-677 ◽  
pp. 1495-1499 ◽  
Author(s):  
Tao Ping Chen ◽  
Biao Qiu

The displacement performance of heat-resistant polymer is evaluated with the artificial cores and natural cores under 95°C. The best concentration of BH heat-resistant polymer is 1500 mg/L, and the best slug is 0.6 PV on the condition of the average permeability is 600×10-3μm2 of the homogeneous core and the oil viscosity is 2.3mPa • s. Under the best concentration and the PV size, BH heat-resistant polymer solution has better displacement effect for the artificial double core whose permeability ratio is less than 4. When permeability ratio exceed 4, the displacement affect no longer increase. When the mobility ratio increase from 0.05 to 0.2, for the artificial cores, the recovery of polymer flooding reduce by 3.17%, and for the natural cores, the recovery of polymer flooding reduce by 2.26%. The recovery of BH polymer that is aged for 90 days after vacuumed is 32.29%. Comparing with the fresh BH polymer, it is lower by 6.56%. That is to say that the aged BH polymer still has good oil displacement efficiency.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Peike Gao ◽  
Hongbo Wang ◽  
Guanxi Li ◽  
Ting Ma

With the development of molecular ecology, increasing low-abundance microbial populations were detected in oil reservoirs. However, our knowledge about the oil recovery potential of these populations is lacking. In this study, the oil recovery potential of low-abundance Dietzia that accounts for less than 0.5% in microbial communities of a water-flooding oil reservoir was investigated. On the one hand, Dietzia sp. strain ZQ-4 was isolated from the water-flooding reservoir, and the oil recovery potential was evaluated from the perspective of metabolisms and oil-displacing test. On the other hand, the strain has alkane hydroxylase genes alkB and P450 CYP153 and can degrade hydrocarbons and produce surfactants. The core-flooding test indicated that displacing fluid with 2% ZQ-4 fermentation broth increased 18.82% oil displacement efficiency, and in situ fermentation of ZQ-4 increased 1.97% oil displacement efficiency. Furthermore, the responses of Dietzia in the reservoir accompanied by the nutrient stimulation process was investigated and showed that Dietzia in some oil production wells significantly increased in the initial phase of nutrient injection and sharply decreased along with the continuous nutrient injection. Overall, this study indicates that Dietzia sp. strain has application potential for enhancing oil recovery through an ex situ way, yet the ability of oil recovery in situ based on nutrient injection is limited.


Author(s):  
Fengqi Tan ◽  
Changfu Xu ◽  
Yuliang Zhang ◽  
Gang Luo ◽  
Yukun Chen ◽  
...  

The special sedimentary environments of conglomerate reservoir lead to pore structure characteristics of complex modal, and the reservoir seepage system is mainly in the “sparse reticular-non reticular” flow pattern. As a result, the study on microscopic seepage mechanism of water flooding and polymer flooding and their differences becomes the complex part and key to enhance oil recovery. In this paper, the actual core samples from conglomerate reservoir in Karamay oilfield are selected as research objects to explore microscopic seepage mechanisms of water flooding and polymer flooding for hydrophilic rock as well as lipophilic rock by applying the Computed Tomography (CT) scanning technology. After that, the final oil recovery models of conglomerate reservoir are established in two displacement methods based on the influence analysis of oil displacement efficiency. Experimental results show that the seepage mechanisms of water flooding and polymer flooding for hydrophilic rock are all mainly “crawling” displacement along the rock surface while the weak lipophilic rocks are all mainly “inrushing” displacement along pore central. Due to the different seepage mechanisms among the water flooding and the polymer flooding, the residual oil remains in hydrophilic rock after water flooding process is mainly distributed in fine throats and pore interchange. These residual oil are cut into small droplets under the influence of polymer solution with stronger shearing drag effect. Then, those small droplets pass well through narrow throats and move forward along with the polymer solution flow, which makes enhancing oil recovery to be possible. The residual oil in weak lipophilic rock after water flooding mainly distributed on the rock particle surface and formed oil film and fine pore-throat. The polymer solution with stronger shear stress makes these oil films to carry away from particle surface in two ways such as bridge connection and forming oil silk. Because of the essential attributes differences between polymer solution and injection water solution, the impact of Complex Modal Pore Structure (CMPS) on the polymer solution displacement and seepage is much smaller than on water flooding solution. Therefore, for the two types of conglomerate rocks with different wettability, the pore structure is the main controlling factor of water flooding efficiency, while reservoir properties oil saturation, and other factors have smaller influence on flooding efficiency although the polymer flooding efficiency has a good correlation with remaining oil saturation after water flooding. Based on the analysis on oil displacement efficiency factors, the parameters of water flooding index and remaining oil saturation after water flooding are used to establish respectively calculation models of oil recovery in water flooding stage and polymer flooding stage for conglomerate reservoir. These models are able to calculate the oil recovery values of this area controlled by single well control, and further to determine the oil recovery of whole reservoir in different displacement stages by leveraging interpolation simulation methods, thereby providing more accurate geological parameters for the fine design of displacement oil program.


2016 ◽  
Vol 9 (1) ◽  
pp. 55-64
Author(s):  
Ma Wenguo

Characteristics of pore structure have an important influence on the development of water flooding. In order to improve the recovery rate, it is important to investigate the relationship between pore structure and oil displacement efficiency. The permeability of the artificial cores in this experiment is 189×10-3μm2, 741×10-3μm2and 21417×10-3μm2. We used the CT technology method to scan the pore structure of the three cores, and did oil displacement experiment to investigate the effect of pore structure on the oil displacement efficiency. The result shows that the pore and throat common affect oil displacement efficiency: the bigger the pore and throat radius, the better is the oil displacement efficiency; the smaller the pore and throat radius, the worse is the oil displacement efficiency. The experiment studied the influence of pore structure on oil displacement efficiency deep into microcosmic pore structure without damaging the core skeleton, thereby improving the basis of oil recovery from the micro level and the mechanism.


2012 ◽  
Vol 550-553 ◽  
pp. 468-471
Author(s):  
Fu Sheng Zhang ◽  
Jian Ouyang ◽  
De Wei Wang ◽  
Xin Fang Feng ◽  
Li Qing Xu

The core displacement experiments show that displacement system containing chemical agent can enhance oil recovery by over 20% comparing to water flooding. Mechanisms by which chemical agent enhance oil recovery of heavy oil reservoir water flooding are: (1) improving mobility ratio by significantly decreasing viscosity of heavy oil, volumetric sweep efficiency is improved; (2) increasing capillary number by significantly decreasing oil-water interfacial tension, oil displacement efficiency is increased; (3) changing wettability of the rock surface from oil-wet to water-wet by significantly reducing the contact angle between displacement liquid and sandstone surface, capillary force is changed from the resistance force to the motive force, the residual oil is expelled from the small pores and the wall of pores, oil displacement efficiency is significantly increased.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1371-1374
Author(s):  
Xiang Chun Zhang ◽  
Wei Sun ◽  
Tian Li Rao ◽  
Hai Zeng Jing ◽  
Yong Jing ◽  
...  

Through the displacement experiment of low permeability sandstone micro model of water Erdos basin, summing up the water displacing oil characteristics, and to explore the influencing factors of micro water oil displacement efficiency. The study found that, the water flooding characteristic main performance for: flooding mode mainly by non piston displacement; heterogeneity is strong, the oil displacement efficiency is low; the crude oil viscosity is low, the oil displacement efficiency is high; the main influencing factors are: physical; heterogeneity; displacement ratio. Therefore, for low permeability sandstone reservoir development, process parameters should be selected reasonably, in order to ensure the good development effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie He ◽  
Xiaodong Liu ◽  
Xinyu Zhu ◽  
Tao Jiang ◽  
Hui He ◽  
...  

AbstractDue to the poor situation of water-flooding mechanism research on Chang 4 + 5 reservoir of Ordos basin, the authors quantitatively studied the influence factors of water-flooding characteristics by sedimentology, casting thin sections, constant-speed mercury injection, scanning electron microscope as well as production records. The size and distribution of pore-throat were also found closely related with the water-flooding seepage law. The results show that the microscopic seepage paths of Chang 4 + 5 reservoir include uniform displacement, finger displacement and peak displacement, and their correspondent oil displacement efficiency reduces in turn under the same conditions. Reservoir heterogeneity, reservoir properties, distribution of pore structure and wettability play a decisive role in water-flooding efficiency. Generally, When the intra-layer range is greater than 4.65, the breakthrough coefficient is greater than 3.54, the coefficient of variation is greater than 0.7, the distribution frequency of inter-layer is greater than 0.5 per meter, and the distribution density is greater than 0.435%, the range between layers is greater than 6.86, the breakthrough coefficient is greater than 2.58, the coefficient of variation is greater than 0.51, and the thickness of inter-layer is greater than 7.54 m. the increasing trend of oil displacement efficiency will be obviously weakened.


Sign in / Sign up

Export Citation Format

Share Document