scholarly journals ANÁLISE DA PROPAGAÇÃO E MANUTENÇÃO DOS VÓRTICES GERADOS POR UM MICROBURST ESTÁTICO E ISOLADO

2016 ◽  
Vol 38 ◽  
pp. 41
Author(s):  
Giuliano Demarco ◽  
Vagner Anabor ◽  
Umberto Rizza ◽  
Franciano Scremin Puhales ◽  
Luís Gustavo Nogueira Martins ◽  
...  

The Southern Brazilian region is specially affected by extreme weather events, very often intense wind gusts coming from deep convection may develop itself as a microburst producing winds higher than 100 km/h. In order to understand the physical and dynamical process evolved in this phenomena, a static and isolated microburst is produced through a Large Eddy Simulation. A quantitative analysis of propagation an maintenance of the microburst vortex ring is performed in order to understand its evolution.

2014 ◽  
Vol 6 (3) ◽  
pp. 261-280
Author(s):  
Heng Ren ◽  
Ning Zhao ◽  
Xi-Yun Lu

AbstractA vortex ring impacting a three-dimensional bump is studied using large eddy simulation for a Reynolds number Re = 4 × 104 based on the initial diameter and translational speed of the vortex ring. The effects of bump height and vortex core thickness for thin and thick vortex rings on the vortical flow phenomena and the underlying physical mechanisms are investigated. Based on the analysis of the evolution of vortical structures, two typical kinds of vortical structures, i.e., the wrapping vortices and the hair-pin vortices, are identified and play an important role in the flow state evolution. The boundary vorticity flux is analyzed to reveal the mechanism of the vorticity generation on the bump surface. The circulation of the primary vortex ring reasonably elucidates some typical phases of flow evolution. Further, the analysis of turbulent kinetic energy reveals the transition from laminar to turbulent state. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to the flow evolution and the flow transition to turbulent state.


2012 ◽  
Vol 69 (12) ◽  
pp. 3491-3500 ◽  
Author(s):  
David M. Romps

Abstract The Gregory–Kershaw–Inness (GKI) parameterization of convective momentum transport, which has a tunable parameter C, is shown to be identical to a parameterization with no pressure gradient force and a mass flux smaller by a factor of 1 − C. Using cloud-resolving simulations, the transilient matrix for momentum is diagnosed for deep convection in radiative–convective equilibrium. Using this transilient matrix, it is shown that the GKI scheme underestimates the compensating subsidence of momentum by a factor of 1 − C, as predicted. This result is confirmed using a large-eddy simulation.


1996 ◽  
Vol 80 (4) ◽  
pp. 333-353 ◽  
Author(s):  
Michael J. Revell ◽  
Don Purnell ◽  
Michael K. Lauren

2013 ◽  
Vol 729 ◽  
pp. 151-179 ◽  
Author(s):  
Hyunchul Jang ◽  
Krishnan Mahesh

AbstractThis paper studies the flow around a propeller rotating in the reverse direction in a uniform free stream. Large eddy simulation is used to study this massively separated flow at a Reynolds number of 480 000 and advance ratios $J= - 0. 5$, $- 0. 7$ and $- 1. 0$. Simulations are performed on two grids; statistics of the loads and velocity field around the propeller show encouraging agreement between the two grids and with experiment. The impact of advance ratio is discussed, and a physical picture of the unsteady flow and its influence on the propeller loads is proposed. An unsteady vortex ring is formed in the vicinity of the propeller disk due to the interaction between the free stream and the reverse flow produced by the reverse rotation. The flow is separated in the blade passages; the most prominent is the separation along the sharp edge of the blade on the downstream side of the blade. This separation results in high-amplitude, transient propeller loads. Conditional averaging is used to describe the statistically relevant events that determine low- and high-amplitude thrust and side-forces. The vortex ring is closer and the reverse flow induced by propeller rotation is lower when the loads are high. The propeller loads scale with $\rho {U}^{2} $ for $J\lt - 0. 7$ and with $\rho {n}^{2} {D}^{2} $ for $J\gt - 0. 7$.


Author(s):  
Shiwei Sun ◽  
Bowen Zhou ◽  
Ming Xue ◽  
Kefeng Zhu

AbstractIn numerical simulations of deep convection at kilometer-scale horizontal resolutions, in-cloud subgrid-scale (SGS) turbulence plays an important role in the transport of heat, moisture and other scalars. By coarse-graining a 50 m high-resolution large-eddy simulation (LES) of an idealized supercell storm to kilometer-scale grid spacings ranging from 250 m to 4 km, the SGS fluxes of heat, moisture, cloud and precipitating water contents are diagnosed a priori. The kilometer-scale simulations are shown to be within the “gray zone” as in-cloud SGS turbulent fluxes are comparable in magnitude to the resolved fluxes at 4 km spacing, and do not become negligible until ~500 m spacing. Vertical and horizontal SGS fluxes are of comparable magnitudes, both exhibit non-local characteristics associated with deep convection as opposed to local gradient-diffusion type of turbulent mixing. As such, they are poorly parameterized by eddy-diffusivity-based closures. To improve the SGS representation of turbulent fluxes in deep convective storms, a scale-similarity LES closure is adapted to kilometer-scale simulations. The model exhibits good correlations with LES-diagnosed SGS fluxes, and is capable of representing counter-gradient fluxes. In a posteriori tests, supercell storms simulated with the refined similarity closure model at kilometer-scale resolutions show better agreement with the LES benchmark in terms of SGS fluxes than those with a turbulent-kinetic-energy-based gradient-diffusion scheme. However, it underestimates the strength of updraft, which is suggested to be a consequence of the model effective resolution being lower than the native grid resolution.


2021 ◽  
Vol 33 (9) ◽  
pp. 094101
Author(s):  
T. H. New ◽  
G. J. Gotama ◽  
U S Vevek

Author(s):  
Chin-Hoh Moeng ◽  
Margaret A. LeMone ◽  
Marat F. Khairoutdinov ◽  
Steve K. Krueger ◽  
Peter A. Bogenschutz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document