scholarly journals Characterization of Decellularized Human Pericardium for Tissue Engineering and Regenerative Medicine Applications

Author(s):  
Luciana Wollmann ◽  
Paula Suss ◽  
João Mendonça ◽  
Cesar Luzia ◽  
Andressa Schittini ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (78) ◽  
pp. 63478-63488 ◽  
Author(s):  
Sofia M. Saraiva ◽  
Sónia P. Miguel ◽  
Maximiano P. Ribeiro ◽  
Paula Coutinho ◽  
Ilídio J. Correia

In the area of regenerative medicine different approaches have been studied to restore the native structure of damaged tissues. Herein, the suitability of a photocrosslinkable hydrogel for tissue engineering applications was studied.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Mingjie Wang ◽  
Zhiguo Yuan ◽  
Ning Ma ◽  
Chunxiang Hao ◽  
Weimin Guo ◽  
...  

The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed.


2015 ◽  
Vol 6 (5) ◽  
pp. 291-298
Author(s):  
Barbara Różalska ◽  
Bartłomiej Micota ◽  
Małgorzata Paszkiewicz ◽  
Beata Sadowska

2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


2015 ◽  
Vol 21 (12) ◽  
pp. 1506-1516 ◽  
Author(s):  
Nicolas Hanauer ◽  
Pierre Latreille ◽  
Shaker Alsharif ◽  
Xavier Banquy

2021 ◽  
Vol 266 ◽  
pp. 118128
Author(s):  
Mengjie Xu ◽  
Miao Qin ◽  
Yizhu Cheng ◽  
Xiaolian Niu ◽  
Jinlong Kong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document