scholarly journals INTERNET OF THINGS BASED REAL-TIME VITAL SIGN MONITORING SYSTEM USING MOBILE APPLICATION

Author(s):  
Sugondo Hadiyoso ◽  
Akhmad Alfaruq ◽  
Rohmat Tulloh ◽  
Yuyun Siti Rohmah ◽  
Erwin Susanto

The development of telehealth technology in monitoring systems has been widely used to support applications in the health sector. The aim is to provide easy access for the community. One of the implications is a real-time monitoring system based on the Internet of Things (IoT) platform. Some health vital signs that are the focus of observation are ECG signal, SpO2, blood pressure and Heart rate which can provide heart health information. In this study an integrated system has been implemented, namely Vital Sign distributed monitoring system through the internet network. The implemented system was able to acquire vital sign then send data to the internet cloud to be stored and processed further for real-time monitoring needs by interested parties. An Android based application that was developed called iHealth VitalSign monitor capable of sending, processing and representing data in numerical and graphical forms. The average delay for each packet delivery was 154.73 ms and conform with the ITU-T recommendations for real-time data transfer. HR detection algorithms have been evaluated on real-time ECG signals, more than 2100 beats were tested and obtained an average accuracy of 98.78%. With this proposed application, it is hoped that it can increase the penetration of telehealth services.

Author(s):  
Masmur Tarigan ◽  
Yaya Heryadi ◽  
Lukas ◽  
Antoni Wibowo ◽  
Wayan Suparta

Kapal ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 88-100
Author(s):  
Adella Winanda Hapsari ◽  
Hari Prastowo ◽  
Trika Pitana

Fuel is an important aspect in the operation of ships that require high costs. The high cost of fuel is not followed by an automatic fuel monitoring process. By not using the fuel consumption monitoring method that works automatically, the shipping management does not know for sure the ship's fuel consumption is in accordance with the shipping mileage, thus triggering fraud committed by the ship's crew against the ship's fuel. Fuel consumption monitoring is carried out primarily to identify opportunities to improve energy efficiency and reduce costs. By following technological developments, Internet of Things (IoT) technology has begun to be applied in various industrial fields because it can transmit data in real-time via the internet network without human-to-human or human-to-computer interaction. In this research, the design of models and experiments related to a monitoring system for fuel consumption was carried out using sensors and microcontrollers integrated with the internet to obtain accurate and real-time data. The test results show that the volume of fuel available in the tank, the volume of fuel discharged, the flow rate of fuel, and the location of the system can be known by the user in real-time via the IoT website. Based on the results of measurements using an ultrasonic level sensor, it is known that the measurement results are quite accurate with a deviation of ± 0.5 cm. Meanwhile, the measurement results by the flow sensor are less accurate because the fuel flow only relies on the force of gravity.


2021 ◽  
Vol 13 (18) ◽  
pp. 10226
Author(s):  
Rajesh Singh ◽  
Mohammed Baz ◽  
Ch. Lakshmi Narayana ◽  
Mamoon Rashid ◽  
Anita Gehlot ◽  
...  

Oil pipeline monitoring is having a significant role in minimizing the impact on the environment and humans during pipeline accidents. The real-time monitoring of oil pipelines empowers the authorities to have continuous supervision of the oil pipeline. The Internet of Things (IoT) provides an opportunity for realizing the real-time monitoring system by deploying the IoT-enabled end devices on the oil pipeline. In this study, we propose a hybrid architecture based on 2.4 GHz-based Zigbee and LoRa communication for oil pipeline monitoring. Moreover, customized end devices and LoRa based gateway are designed and implemented for sensing the critical parameters of an oil pipeline. Here, we have performed the simulation of ZigBee communication on the OPNET simulator for evaluating the parameters such as packet delivery ratio (PDR), retransmission attempts, throughput, medium access (MAC) queue size, and queue delay. Furthermore, the distinct evaluation metrics of LoRa such as bit rate, link budget, and receiver sensitivity are also included. Finally, a real-time experiment is implemented with customized end devices and a gateway for evaluating the proposed architecture. In the real-time experiment, the devices and gateway are logging the pressure sensory data into the Cayenne cloud.


2017 ◽  
Vol 9 (3) ◽  
pp. 28 ◽  
Author(s):  
Ashish Rauniyar ◽  
Mohammad Irfan ◽  
Oka Saputra ◽  
Jin Kim ◽  
Ah Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document