Reduced-Order Time-Domain Simulation of Floating Bodies for Efficient Design Analysis

2015 ◽  
Author(s):  
Hyun Y. Kim ◽  
Stephanie L. Fitzpatrick ◽  
David C. Kring

This paper describes the development and implementation of a reduced-order model to represent the hydrodynamic forces acting on a ship using Impulse-Response Functions (IRF). The approach will be conducted using Aegir, a timedomain seakeeping program that uses an advanced, Non-Rational Uniform B-Spline (NURBS) based, high-order boundary element method. The Cummins equation is slightly modified such that the memory function is decomposed into two terms: one for the impulsive velocity and the other term for the impulsive displacement. The present approach also further develops a method to simulate interactions between multiple floating bodies. The IRF convolutions for the free surface memory effect significantly reduce the computational effort compared to direct simulation. This will be demonstrated for both single and multi-body forward-speed, seakeeping simulations.

Author(s):  
Malte Krack ◽  
Lars Panning-von Scheidt ◽  
Jörg Wallaschek ◽  
Christian Siewert ◽  
Andreas Hartung

The design of bladed disks with contact interfaces typically requires analyses of the resonant forced response and flutter-induced limit cycle oscillations. The steady-state vibration behavior can efficiently be calculated using the Multi-Harmonic Balance method. The dimension of the arising algebraic systems of equations is essentially proportional to the number of harmonics and the number of degrees of freedom (DOFs) retained in the model. Extensive parametric studies necessary e.g. for robust design optimization are often not possible in practice due to the resulting computational effort. In this paper, a two-step nonlinear reduced order modeling approach is proposed. First, the autonomous nonlinear system is analyzed using a Complex Nonlinear Modal Analysis technique based on the work of Laxalde and Thouverez [1]. The methodology in [1] was refined by an exact condensation approach as well as analytical calculation of gradients in order to efficiently study localized nonlinearities in large-scale systems. Moreover, a continuation method was employed in order to predict nonlinear modal interactions. Modal properties such as eigenfrequency and modal damping are directly calculated with respect to the kinetic energy in the system. In a second step, a reduced order model is built based on the Single Nonlinear Resonant Mode theory. It is shown that linear damping and harmonic forcing can be superimposed. Moreover, similarity properties can be exploited to vary normal preload or gap values in contact interfaces. Thus, a large parameter space can be covered without the need for re-computation of nonlinear modal properties. The computational effort for evaluating the reduced order model is almost negligible since it contains a single DOF only, independent of the original system. The methodology is applied to both a simplified and a large-scale model of a bladed disk with shroud contact interfaces. In contrast to [1], the contact constraints account for variable normal load and lift-off in addition to dry friction. Forced response functions, backbone curves for varying normal preload and excitation level as well as flutter-induced limit cycle oscillations are analysed and compared to conventional methods. The limits of the proposed methodology are indicated and discussed.


Author(s):  
William M. Milewski ◽  
Benjamin S. H. Connell ◽  
Valerie J. Vinciullo ◽  
Ivan N. Kirschner

The reduced order model at the heart of the APS Environmental and Ship Motion Forecasting system must retain the accuracy of a higher fidelity seakeeping code while simultaneously meeting computational speed required to provide motion forecasts minutes into the future for two or more ships operating in close proximity. We describe the mathematical formulation of the reduced order model and efficient modeling techniques to construct databases of wave force Response Amplitude Operators and Impulse Response Functions before presenting comparisons between the reduced order model, a higher fidelity seakeeping code called AEGIR, and experimental data for the R/V Melville and two multi-ship configurations.


Author(s):  
Malte Krack ◽  
Lars Panning-von Scheidt ◽  
Jörg Wallaschek ◽  
Christian Siewert ◽  
Andreas Hartung

The design of bladed disks with contact interfaces typically requires analyses of the resonant forced response and flutter-induced limit cycle oscillations. The steady-state vibration behavior can efficiently be calculated using the multiharmonic balance method. The dimension of the arising algebraic systems of equations is essentially proportional to the number of harmonics and the number of degrees of freedom (DOFs) retained in the model. Extensive parametric studies necessary, e.g., for robust design optimization are often not possible in practice due to the resulting computational effort. In this paper, a two-step nonlinear reduced order modeling approach is proposed. First, the autonomous nonlinear system is analyzed using the generalized Fourier-Galerkin method. In order to efficiently study localized nonlinearities in large-scale systems, an exact condensation approach as well as analytically calculated gradients are employed. Moreover, a continuation method is employed in order to predict nonlinear modal interactions. Modal properties such as eigenfrequency and modal damping are directly calculated with respect to the kinetic energy in the system. In a second step, a reduced order model is built based on the single nonlinear resonant mode theory. It is shown that linear damping and harmonic forcing can be superimposed. Moreover, similarity properties can be exploited to vary normal preload or gap values in contact interfaces. Thus, a large parameter space can be covered without the need for recomputation of nonlinear modal properties. The computational effort for evaluating the reduced order model is almost negligible since it contains a single DOF only, independent of the original system. The methodology is applied to both a simplified and a large-scale model of a bladed disk with shroud contact interfaces. Forced response functions, backbone curves for varying normal preload, and excitation level as well as flutter-induced limit cycle oscillations are analyzed and compared to conventional methods. The limits of the proposed methodology are indicated and discussed.


Transmission Line model are an important role in the electrical power supply. Modeling of such system remains a challenge for simulations are necessary for designing and controlling modern power systems.In order to analyze the numerical approach for a benchmark collection Comprehensive of some needful real-world examples, which can be utilized to evaluate and compare mathematical approaches for model reduction. The approach is based on retaining the dominant modes of the system and truncation comparatively the less significant once.as the reduced order model has been derived from retaining the dominate modes of the large-scale stable system, the reduction preserves the stability. The strong demerit of the many MOR methods is that, the steady state values of the reduced order model does not match with the higher order systems. This drawback has been try to eliminated through the Different MOR method using sssMOR tools. This makes it possible for a new assessment of the error system Offered that the Observability Gramian of the original system has as soon as been thought about, an H∞ and H2 error bound can be calculated with minimal numerical effort for any minimized model attributable to The reduced order model (ROM) of a large-scale dynamical system is essential to effortlessness the study of the system utilizing approximation Algorithms. The response evaluation is considered in terms of response constraints and graphical assessments. the application of Approximation methods is offered for arising ROM of the large-scale LTI systems which consist of benchmark problems. The time response of approximated system, assessed by the proposed method, is also shown which is excellent matching of the response of original system when compared to the response of other existing approaches .


Sign in / Sign up

Export Citation Format

Share Document