Comparison of muscle activity according to various squat exercise with hip external rotation

Author(s):  
Hun-Hyun Kim ◽  
Su-Min Park ◽  
Seung-Hak Lee ◽  
Dong Yeop Lee ◽  
Jae Ho Yu ◽  
...  
2015 ◽  
Vol 27 (6) ◽  
pp. 1869-1870
Author(s):  
Dong-Kyu Lee ◽  
Il-Young Yu ◽  
In-Gui Jung ◽  
Jae-Seop Oh

2012 ◽  
Vol 47 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Joseph M. McBeth ◽  
Jennifer E. Earl-Boehm ◽  
Stephen C. Cobb ◽  
Wendy E. Huddleston

Context: Lower extremity overuse injuries are associated with gluteus medius (GMed) weakness. Understanding the activation of muscles about the hip during strengthening exercises is important for rehabilitation. Objective: To compare the electromyographic activity produced by the gluteus medius (GMed), tensor fascia latae (TFL), anterior hip flexors (AHF), and gluteus maximus (GMax) during 3 hip-strengthening exercises: hip abduction (ABD), hip abduction with external rotation (ABD-ER), and clamshell (CLAM) exercises. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Twenty healthy runners (9 men, 11 women; age = 25.45 ± 5.80 years, height = 1.71 ± 0.07 m, mass = 64.43 ± 7.75 kg) participated. Intervention(s): A weight equal to 5% body mass was affixed to the ankle for the ABD and ABD-ER exercises, and an equivalent load was affixed for the CLAM exercise. A pressure biofeedback unit was placed beneath the trunk to provide positional feedback. Main Outcome Measure(s): Surface electromyography (root mean square normalized to maximal voluntary isometric contraction) was recorded over the GMed, TFL, AHF, and GMax. Results: Three 1-way, repeated-measures analyses of variance indicated differences for muscle activity among the ABD (F3,57 = 25.903, P<.001), ABD-ER (F3,57 = 10.458, P<.001), and CLAM (F3,57 = 4.640, P=.006) exercises. For the ABD exercise, the GMed (70.1 ± 29.9%), TFL (54.3 ± 19.1%), and AHF (28.2 ± 21.5%) differed in muscle activity. The GMax (25.3 ± 24.6%) was less active than the GMed and TFL but was not different from the AHF. For the ABD-ER exercise, the TFL (70.9 ± 17.2%) was more active than the AHF (54.3 ± 24.8%), GMed (53.03 ± 28.4%), and GMax (31.7 ± 24.1 %). For the CLAM exercise, the AHF (54.2 ± 25.2%) was more active than the TFL (34.4 ± 20.1%) and GMed (32.6 ± 16.9%) but was not different from the GMax (34.2 ± 24.8%). Conclusions: The ABD exercise is preferred if targeted activation of the GMed is a goal. Activation of the other muscles in the ABD-ER and CLAM exercises exceeded that of GMed, which might indicate the exercises are less appropriate when the primary goal is the GMed activation and strengthening.


2020 ◽  
pp. 1-9
Author(s):  
Neal R. Glaviano ◽  
David M. Bazett-Jones

Context: Hip muscle strength has previously been evaluated in various sagittal plane testing positions. Altering the testing position appears to have an influence on hip muscle torque during hip extension, abduction, and external rotation. However, it is unknown how altering the testing position influences hip muscle activity during these commonly performed assessments. Objectives: To evaluate how hip sagittal plane position influences hip muscle activation and torque output. Study Design: Cross-sectional. Setting: Laboratory. Patients or Other Participants: A total of 22 healthy females (age = 22.1 [1.4] y; mass = 63.4 [11.3] kg; height = 168.4 [6.2] cm) were recruited. Intervention: None. Main Outcome Measures: Participants completed isometric contractions with surface electromyography on the superior and inferior gluteus maximus; anterior, middle, and posterior gluteus medius; biceps femoris, semitendinosus, adductor longus, and tensor fascia latae. Extension and external rotation were tested in 0°, 45°, and 90° of hip flexion and abduction was tested in −5°, 0°, and 45° of hip flexion. Repeated-measures analysis of variances were used for statistical analysis (P ≤ .01). Results: Activation of gluteal (P < .007), semitendinosus (P = .002), and adductor longus (P = .001) muscles were lesser for extension at 90° versus less flexed positions. Adductor longus activity was greatest during 90° of hip flexion for external rotation torque testing (P < .001). Tensor fascia latae (P < .001) and gluteus maximus (P < .001) activities were greater in 45° of hip flexion. Significant differences in extension (P < .001) and abduction (P < .001) torque were found among positions. Conclusions: Position when assessing hip extension and abduction torque has an influence on both muscle activity and torque output but only muscle activity for hip external rotation torque. Clinicians should be aware of the influence of position on hip extension, abduction, and external rotation muscle testing and select a position most in line with their clinical goals.


2017 ◽  
Vol 29 (1) ◽  
pp. 43-47 ◽  
Author(s):  
Jeong-Il Kang ◽  
Joon-Su Park ◽  
Hyun Choi ◽  
Dae-Keun Jeong ◽  
Hye-Min Kwon ◽  
...  

2011 ◽  
Vol 39 (12) ◽  
pp. 2670-2678 ◽  
Author(s):  
Vanessa J.C. Wood ◽  
Michelle B. Sabick ◽  
Ron P. Pfeiffer ◽  
Seth M. Kuhlman ◽  
Jason H. Christensen ◽  
...  

Background: Despite considerable medical advances, arthroscopy remains the only definitive means of superior labrum anterior-posterior (SLAP) lesion diagnosis. Natural shoulder anatomic variants limit the reliability of radiographic findings and clinical evaluations are not consistent. Accurate clinical diagnostic techniques would be advantageous because of the invasiveness, patient risk, and financial cost associated with arthroscopy. Purpose: The purpose of this study was to examine the behavior of the joint-stabilizing muscles in provocative tests for SLAP lesions. Electromyography was used to characterize the muscle behavior, with particular interest in the long head of the biceps brachii (LHBB), as activation of the long head and subsequent tension in the biceps tendon should, based on related research, elicit labral symptoms in SLAP lesion patients. Study Design: Controlled laboratory study. Methods: Volunteers (N = 21) without a history of shoulder injury were recruited. The tests analyzed were active compression, Speed’s, pronated load, biceps load I, biceps load II, resisted supination external rotation, and Yergason’s. Tests were performed with a dynamometer to improve reproducibility. Muscle activity was recorded for the long and short heads of the biceps brachii, anterior deltoid, pectoralis major, latissimus dorsi, infraspinatus, and supraspinatus. Muscle behavior for each test was characterized by peak activation and proportion of muscle activity. Results: Speed’s, active compression palm-up, bicep I, and bicep II produced higher long head activations. Resisted supination external rotation, bicep I, bicep II, and Yergason’s produced a higher LHBB proportion. Conclusion: Biceps load I and biceps load II elicited promising long head behavior (high activation and selectivity). Speed’s and active compression palm up elicited higher activation of the LHBB, and resisted supination and Yergason’s elicited selective LHBB activity. These top performing tests utilize a unique range of test variables that may prove valuable for optimal SLAP test design and performance. Clinical Relevance: This study examines several provocative tests that are frequently used in the clinical setting as a means of evaluating a potential SLAP lesion.


Author(s):  
Hyeon-Hee Kim ◽  
Kyung-Hun Kim

Background and purpose: Knee injuries are common among female softball players, and the stability of the lower extremities and the strength of the knee are essential factors for them. The purpose of this study was to investigate the effect of Kinesio taping with squat exercise (KTSE) on lower extremity muscle activity, muscle strength, muscle tone, and dynamic stability of softball players. Methods: In this study, 40 softball players were randomly assigned to the KTSE group and sham taping with squat exercise (SKTSE) group. All subjects were tested three times a week for 6 weeks, i.e., for a total of 18 times. To evaluate the lower-extremity muscle activity, muscle strength, and muscle tone of the lower extremities, as well as dynamic stability, we used Noraxon Mini DTS, a digital muscular meter from JTech Medical, MyotonPRO, and the side hop test (a clinical evaluation method), respectively. These items were measured before the experiment and 6 weeks after the start of the experiment. Results: Both groups showed significant differences in lower-extremity muscle activity, muscle strength, muscle tone, and dynamic stability (p < 0.05). After the experiment, significant effects on lower-extremity muscle activity, muscle strength, muscle tone, and dynamic stability were observed in the KTSE group compared with in the SKTSE group (p < 0.05). Conclusions: KTSE did not have a negative effect on all items of the functional performance test. KTSE improved lower-extremity muscle activity, muscle strength, muscle tone, and dynamic stability.


Sign in / Sign up

Export Citation Format

Share Document