Regional Monsoon Rainfall Forecasting by Using Modified Hendrick and Scholl Technique for Navsari, Bharuch and Valsad Districts of South Gujarat

Author(s):  
Neeraj Kumar ◽  
S.K. Chandrawanshi ◽  
C.C. Panchal ◽  
J.D. Thanki
2020 ◽  
Vol 15 (3) ◽  
pp. 034055
Author(s):  
Kyung-Ja Ha ◽  
Byeong-Hee Kim ◽  
Eui-Seok Chung ◽  
Johnny C L Chan ◽  
Chih-Pei Chang

MAUSAM ◽  
2022 ◽  
Vol 53 (2) ◽  
pp. 225-232
Author(s):  
PANKAJ JAIN ◽  
ASHOK KUMAR ◽  
PARVINDER MAINI ◽  
S. V. SINGH

Feedforward Neural Networks are used for daily precipitation forecast using several test stations all over India. The six year European Centre of Medium Range Weather Forecasting (ECMWF) data is used with the training set consisting of the four year data from 1985-1988 and validation set consisting of the data from 1989-1990. Neural networks are used to develop a concurrent relationship between precipitation and other atmospheric variables. No attempt is made to select optimal variables for this study and the inputs are chosen to be same as the ones obtained earlier at National Center for Medium Range Weather Forecasting (NCMRWF) in developing a linear regression model. Neural networks are found to yield results which are atleast as good as linear regression and in several cases yield 10 - 20 % improvement. This is encouraging since the variable selection has so far been optimized for linear regression.


Rain is of uttermost importance for agriculture based economies. Most of the Asian countries, India in particular largely depend on a good rainfall. The prediction of rainfall will not only help government to make better future policies but also farmers and agro based companies can make better future management. Rainfall forecasting involves high degree of uncertainty and for such conditions fuzzy time series and other soft computing techniques are best to deal with. The utility of a forecasting method lies with the accuracy with the predicted values. In this paper rainfall prediction by fuzzy time series model is proposed in which two difference values of the interval corresponding to the fuzzified forecasted value is proposed. This model is tested on real time data of average monsoon rainfall in India. The predicted values are compared with Chen model. The results show that the proposed model have less error compared to Chen’s model.


2020 ◽  
Vol 12 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Pijush Basak

The South West Monsoon rainfall data of the meteorological subdivision number 6 of India enclosing Gangetic West Bengal is shown to be decomposable into eight empirical time series, namely Intrinsic Mode Functions. This leads one to identify the first empirical mode as a nonlinear part and the remaining modes as the linear part of the data. The nonlinear part is modeled with the technique Neural Network based Generalized Regression Neural Network model technique whereas the linear part is sensibly modeled through simple regression method. The different Intrinsic modes as verified are well connected with relevant atmospheric features, namely, El Nino, Quasi-biennial Oscillation, Sunspot cycle and others. It is observed that the proposed model explains around 75% of inter annual variability (IAV) of the rainfall series of Gangetic West Bengal. The model is efficient in statistical forecasting of South West Monsoon rainfall in the region as verified from independent part of the real data. The statistical forecasts of SWM rainfall for GWB for the years 2012 and 2013 are108.71 cm and 126.21 cm respectively, where as corresponding to the actual rainfall of 93.19 cm 115.20 cm respectively which are within one standard deviation of mean rainfall.


Author(s):  
Mohammad Shohidul Islam ◽  
Sultana Easmin Siddika ◽  
S M Injamamul Haque Masum

Rainfall forecasting is very challenging task for the meteorologists. Over the last few decades, several models have been utilized, attempting the successful analysing and forecasting of rainfall. Recorded climate data can play an important role in this regard. Long-time duration of recorded data can be able to provide better advancement of rainfall forecasting. This paper presents the utilization of statistical techniques, particularly linear regression method for modelling the rainfall prediction over Bangladesh. The rainfall data for a period of 11 years was obtained from Bangladesh Meteorological department (BMD), Dhaka i.e. that was surface-based rain gauge rainfall which was acquired from 08 weather stations over Bangladesh for the years of 2001-2011. The monthly and yearly rainfall was determined. In order to assess the accuracy of it some statistical parameters such as average, meridian, correlation coefficients and standard deviation were determined for all stations. The model prediction of rainfall was compared with true rainfall which was collected from rain gauge of different stations and it was found that the model rainfall prediction has given good results.


Author(s):  
Pundra Chandra Shaker Reddy ◽  
Alladi Sureshbabu

Aims & Background: India is a country which has exemplary climate circumstances comprising of different seasons and topographical conditions like high temperatures, cold atmosphere, and drought, heavy rainfall seasonal wise. These utmost varieties in climate make us exact weather prediction is a challenging task. Majority people of the country depend on agriculture. Farmers require climate information to decide the planting. Weather prediction turns into an orientation in farming sector to deciding the start of the planting season and furthermore quality and amount of their harvesting. One of the variables are influencing agriculture is rainfall. Objectives & Methods: The main goal of this project is early and proper rainfall forecasting, that helpful to people who live in regions which are inclined natural calamities such as floods and it helps agriculturists for decision making in their crop and water management using big data analytics which produces high in terms of profit and production for farmers. In this project, we proposed an advanced automated framework called Enhanced Multiple Linear Regression Model (EMLRM) with MapReduce algorithm and Hadoop file system. We used climate data from IMD (Indian Metrological Department, Hyderabad) in 1901 to 2002 period. Results: Our experimental outcomes demonstrate that the proposed model forecasting the rainfall with better accuracy compared with other existing models. Conclusion: The results of the analysis will help the farmers to adopt effective modeling approach by anticipating long-term seasonal rainfall.


Sign in / Sign up

Export Citation Format

Share Document