Efficacy of fungicides against pea root rot/wilt complex pathogens in Himachal Pradesh

2020 ◽  
Vol 35 (2) ◽  
pp. 186-189
Author(s):  
B. R. Thakur ◽  
Nisha Kumari ◽  
Priya Bhargava ◽  
Dimple Rana
2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hammad Abdelwanees Ketta ◽  
Omar Abd El-Raouf Hewedy

Abstract Background Root rot pathogens reported to cause considerable losses in both the quality and productivity of common bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.). It is an aggressive crop disease with detriment economic influence caused by Fusarium solani and Rhizoctonia solani among other soil-borne fungal pathogens. Destructive plant diseases such as root rot have been managed in the last decades using synthetic pesticides. Main body Seeking of economical and eco-friendly alternatives to combat aggressive soil-borne fungal pathogens that cause significant yield losses is urgently needed. Trichoderma emerged as promising antagonist that inhibits pathogens including those inducing root rot disease. Detailed studies for managing common bean and pea root rot disease using different Trichoderma species (T. harzianum, T. hamatum, T. viride, T. koningii, T. asperellum, T. atroviridae, T. lignorum, T. virens, T. longibrachiatum, T. cerinum, and T. album) were reported both in vitro and in vivo with promotion of plant growth and induction of systemic defense. The wide scale application of selected metabolites produced by Trichoderma spp. to induce host resistance and/or to promote crop yield, may represent a powerful tool for the implementation of integrated pest management strategies. Conclusions Biological management of common bean and pea root rot-inducing pathogens using various species of the Trichoderma fungus might have taken place during the recent years. Trichoderma species and their secondary metabolites are useful in the development of protection against root rot to bestow high-yielding common bean and pea crops.


2003 ◽  
Vol 83 (3) ◽  
pp. 519-524 ◽  
Author(s):  
A. G. Xue

The efficacy of seed treatments with bioagent ACM941 (a strain of Clonostachys rosea), its formulated products GB116 and ACM941-Pro, and common fungicides for the control of pea root rot complex were examined in six field trials in western Canada from 1996 to 2000. The effects on seedling emergence, root rot severity, and yield varied among years. In trials 1 and 2 (1996–1997), none of the treatments significantly reduced root rot severity or increased yield. ACM941 + Thiram 75WP was the most effective treatment, increasing emergence by 17.4% and was significantly better than that of the untreated controls. In trials 3 and 4 (1997–1998), Apron FL alone and ACM941 + Apron FL were significantly better than the untreated control, increasing emergence by 6.2 and 7.7%, and yield by 10.8 and 11.5%, respectively. In trials 5 and 6 (1999–2000), AC M 941 and GB116 were equally the most effective treatments, increasing emergence by 11.5 and 12.2%, and yield by 8.2 and 6.3%, respectively. These effects were significantly greater than that of the untreated control, but not significantly different from those of Apron FL or Vitaflo-280. ACM941-Pro was developed and tested in 2000 only, and it increased emergence by 17.1% and reduced root rot severity by 29.6%. Key words: Bioagent, Clonostachys rosea, field pea, Pisum sativum, pea root rot complex (PRRC), seed treatment, fungicide


Author(s):  
D. J. Stamps

Abstract A description is provided for Aphanomyces euteiches. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Pea, Arabis, pansy, sweet pea, clover, bean, lupin, vetch, lucerne, Melilotus, barley, oats, Echinodorus brevipedicellatus. Conifer seedlings and other hosts were infected by inoculation. DISEASE: Root rot of pea. GEOGRAPHICAL DISTRIBUTION: Asia (Japan); Australia (Tasmania); Europe (UK, Denmark, France, Norway, Sweden, USSR); N. America (USA). (CMI Map 78, ed. 3, 1977). TRANSMISSION: Soil-borne, persisting in the soil for many years. Studies in Wisconsin suggested that A. euteiches may live as a weak parasite in the roots of many plants and occur naturally in some virgin soils (6, 523). Oospores were indicated to be the primary inocula for new outbreaks of pea root rot, zoospores the primary infective agents (39, 646). Survival between pea crops depended on oospore durability and possible alternative hosts, not saprophytic activity (41, 689). Studies were made of population dynamics in the soil (48, 2067) and penetration and infection of roots by zoospores (42, 287).


2014 ◽  
Vol 62 (20) ◽  
pp. 4584-4591 ◽  
Author(s):  
Shakhawat Hossain ◽  
Göran Bergkvist ◽  
Kerstin Berglund ◽  
Robert Glinwood ◽  
Patrick Kabouw ◽  
...  

2004 ◽  
Vol 44 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Vinay Sagar ◽  
SK Sugha

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 529B-529
Author(s):  
M.A. Chandler ◽  
V.A. Fritz ◽  
F.L. Pfleger ◽  
R.R. Allmaras

Pea root rot is a serious economic threat to pea production in the Great Lakes region. The primary causal organism is Aphanomyces euteiches Drechs., which is responsible for an estimated 10% annual crop loss. A fall oat (Avena sativa) rotation before spring pea planting reduces disease severity. To better understand the beneficial effect of oat on A. euteiches, isolated individual pathogen lifecycle stages of zoospores, mycelium, and oospores were treated in culture with oat extract. Resulting mycelial mats were dried and weighed. Treatment with 90%, 70%, 50%, and 30% oat extract resulted in significant spore germination and mycelial growth of A. euteiches. In the presence of nutrient solution, oat extract concentrations of 90%, 70%, 50%, and 30% significantly enhanced spore germination and mycelial growth of the pathogen. These results demonstrate that the use of oat extract results in dosage dependent germination and growth of A. euteiches.


2015 ◽  
Vol 392 (1-2) ◽  
pp. 227-238 ◽  
Author(s):  
Shakhawat Hossain ◽  
Göran Bergkvist ◽  
Robert Glinwood ◽  
Kerstin Berglund ◽  
Anna Mårtensson ◽  
...  

Plant Disease ◽  
1999 ◽  
Vol 83 (12) ◽  
pp. 1108-1112 ◽  
Author(s):  
L. Persson ◽  
M. Larsson-Wikström ◽  
B. Gerhardson

The ability of field soils to suppress pea root rot caused by Aphanomyces euteiches was assessed in field soil samples in a greenhouse bioassay and in field experiments sown with pea in monoculture for four years. In the bioassay, an inoculum of oospores in talcum powder was added to the test soils 1 week prior to sowing of pea seeds. The rate of infection was assessed 4 weeks after sowing. The field experiments were placed in six localities with varying degrees of soil suppressiveness to pea root rot and the pea yield and number of oospores of A. euteiches in root tissue were measured each year. A large variation in disease suppression was found in 24 arbitrarily chosen soils, sampled in the vining pea growing area in southern Sweden, and some soils were found to be strongly disease suppressive. The pea root rot development was also clearly different between the field experiments, depending on the soil. In an experiment on a soil showing low disease suppressiveness in the greenhouse bioassay, the crop failed in the second year, the number of oospores in root tissue increased rapidly over time, and no yield at all could be taken the fourth year. In contrast, on a soil with a high disease suppressiveness in the bioassay, the pea monoculture led to a slow build-up of oospores in root tissue and a steady high yield of 5,300 kg/ha the fourth year.


Sign in / Sign up

Export Citation Format

Share Document