Efficacy of Clonostachys rosea strain ACM941 and fungicide seed treatments for controlling the root rot complex of field pea

2003 ◽  
Vol 83 (3) ◽  
pp. 519-524 ◽  
Author(s):  
A. G. Xue

The efficacy of seed treatments with bioagent ACM941 (a strain of Clonostachys rosea), its formulated products GB116 and ACM941-Pro, and common fungicides for the control of pea root rot complex were examined in six field trials in western Canada from 1996 to 2000. The effects on seedling emergence, root rot severity, and yield varied among years. In trials 1 and 2 (1996–1997), none of the treatments significantly reduced root rot severity or increased yield. ACM941 + Thiram 75WP was the most effective treatment, increasing emergence by 17.4% and was significantly better than that of the untreated controls. In trials 3 and 4 (1997–1998), Apron FL alone and ACM941 + Apron FL were significantly better than the untreated control, increasing emergence by 6.2 and 7.7%, and yield by 10.8 and 11.5%, respectively. In trials 5 and 6 (1999–2000), AC M 941 and GB116 were equally the most effective treatments, increasing emergence by 11.5 and 12.2%, and yield by 8.2 and 6.3%, respectively. These effects were significantly greater than that of the untreated control, but not significantly different from those of Apron FL or Vitaflo-280. ACM941-Pro was developed and tested in 2000 only, and it increased emergence by 17.1% and reduced root rot severity by 29.6%. Key words: Bioagent, Clonostachys rosea, field pea, Pisum sativum, pea root rot complex (PRRC), seed treatment, fungicide

2018 ◽  
Vol 19 (3) ◽  
pp. 212-219
Author(s):  
Chryseis T. Modderman ◽  
Samuel Markell ◽  
Michael Wunsch ◽  
Julie S. Pasche

Field pea (Pisum sativum L.) root rot has resulted in substantial yield losses in North Dakota, with symptoms ranging from small lesions to complete root destruction. Traditional management practices such as seed treatment fungicides and crop rotation have proven insufficient under high disease pressure. The objective of this research was to determine the efficacy of in-furrow fungicide applications for management of field pea root rot under greenhouse and field conditions. In-furrow fungicides generally reduced root rot severity, sometimes significantly over the seed treatment in the field; however, the level of control varied across hosts and pathogens in both greenhouse and field trials. Prothioconazole, fluopyram, and penthiopyrad provided the most consistent results across trials. The results of these studies indicate that the use of in-furrow fungicides provides growers with another tool for managing Fusarium root rot.


2007 ◽  
Vol 87 (1) ◽  
pp. 167-174 ◽  
Author(s):  
A. G. Xue ◽  
E. Cober ◽  
M. J. Morrison ◽  
H. D. Voldeng ◽  
B. L. Ma

Field trials were conducted with soybean at two sites each year from 2001 to 2003 in Ottawa, ON, to determine the effect of seed treatments with various combinations of seven formulated fungicides and the bioagent Yield Shield (Bacillus pumilus GB34) under Rhizoctonia solani inoculated conditions. Controls were untreated seed planted into both non-inoculated (natural) soil and soil inoculated with R. solani. Compared with the non-inoculated control, inoculation significantly increased root rot severity and reduced emergence by 27%, and yield by 31%. Under the inoculated conditions, none of the seed treatments significantly increased emergence or yield in all of the six trials when compared with the control. Allegiance (metalaxyl) plus Vitaflo-280 (carbathiin plus thiram) and Vitaflo-280 alone were the most effective seed treatments, increasing emergence in by 20 and 19% and yield by 21 and 26%, which were significantly better than the control in four and five trials for emergence and three and four trials for yield, respectively. Allegiance plus HEC5725 (HEC5725), Apron Maxx RTA (fludioxonil plus metalaxyl), and Maxim 480FS (fludioxonil) increased both emergence and yield in two trials and TFL RTU (metalaxyl plus triflox ystrobin) plus Yield Shield in one trial. There was no difference between seed treatment with Allegiance and the untreated control for all parameters, confirming that metalaxyl is ineffective to R. solani. It is concluded that carbathiin, thiram, HEC5725, fludioxonil an trifloxystrobin are effective active ingredients protecting soybean from soil-borne R. solani and increasing plant emergence and yield. Key words: Rhizoctonia solani, seed treatment, soybean, Glycine max, fungicide, bioagent


2003 ◽  
Vol 93 (3) ◽  
pp. 329-335 ◽  
Author(s):  
Allen G. Xue

Pea root rot complex (PRRC), caused by Alternaria alternata, Aphanomyces euteiches, Fusarium oxysporum f. sp. pisi, F. solani f. sp. pisi, Mycosphaerella pinodes, Pythium spp., Rhizoctonia solani, and Sclerotinia sclerotiorum, is a major yield-limiting factor for field pea production in Canada. A strain of Clonostachys rosea (syn. Gliocladium roseum), ACM941 (ATCC 74447), was identified as a mycoparasite against these pathogens. When grown near the pathogen, ACM941 often was stimulated to produce lateral branches that grew directly toward the pathogen mycelium, typically entwining around the pathogen mycelium. When applied to the seed, ACM941 propagated in the rhizosphere and colonized the seed coat, hypocotyl, and roots as the plant developed and grew. ACM941 significantly reduced the recovery of all fungal pathogens from infected seed, increased in vitro seed germination by 44% and seedling emergence by 22%, and reduced root rot severity by 76%. The effects were similar to those of thiram fungicide, which increased germination and emergence by 33 and 29%, respectively, and reduced root rot severity by 65%. When soil was inoculated with selected PRRC pathogens in a controlled environment, seed treatment with ACM941 significantly increased emergence by 26, 38, 28, 13, and 21% for F. oxysporum f. sp. pisi, F. solani f. sp. pisi, M. pinodes, R. solani, and S. sclerotiorum, respectively. Under field conditions from 1995 to 1997, ACM941 increased emergence by 17, 23, 22, 13, and 18% and yield by 15, 6, 28, 6, and 19% for the five respective pathogens. The seed treatment effects of ACM941 on these PRRC pathogens were greater or statistically equivalent to those achieved with thiram. Results of this study suggest that ACM941 is an effective bioagent in controlling PRRC and is an alternative to existing chemical products.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lukas Wille ◽  
Mario Kurmann ◽  
Monika M. Messmer ◽  
Bruno Studer ◽  
Pierre Hohmann

Plant health is recognised as a key element to ensure global food security. While plant breeding has substantially improved crop resistance against individual pathogens, it showed limited success for diseases caused by the interaction of multiple pathogens such as root rot in pea (Pisum sativum L.). To untangle the causal agents of the pea root rot complex and determine the role of the plant genotype in shaping its own detrimental or beneficial microbiome, fungal and oomycete root rot pathogens, as well as previously identified beneficials, i.e., arbuscular mycorrhizal fungi (AMF) and Clonostachys rosea, were qPCR quantified in diseased roots of eight differently resistant pea genotypes grown in four agricultural soils under controlled conditions. We found that soil and pea genotype significantly determined the microbial compositions in diseased pea roots. Despite significant genotype x soil interactions and distinct soil-dependent pathogen complexes, our data revealed key microbial taxa that were associated with plant fitness. Our study indicates the potential of fungal and oomycete markers for plant health and serves as a precedent for other complex plant pathosystems. Such microbial markers can be used to complement plant phenotype- and genotype-based selection strategies to improve disease resistance in one of the world’s most important pulse crops of the world.


2017 ◽  
Vol 63 (9) ◽  
pp. 758-768 ◽  
Author(s):  
A. Esmaeili Taheri ◽  
S. Chatterton ◽  
B.D. Gossen ◽  
D.L. McLaren

Oomycetes are a diverse group of microorganisms; however, little is known about their composition and biodiversity in agroecosystems. Illumina MiSeq was used to determine the type and abundance of oomycetes associated with pea root rot in the Canadian prairies. Additional objectives of the study were to identify differences in oomycete communities associated with pea root health and compare oomycete communities among the 3 prairie provinces, where field peas are commonly cultivated. Samples of soil from the rhizosphere of field pea (Pisum sativum L.) were collected from patches of asymptomatic or diseased plants from 26 commercial fields in 2013 and 2014. Oomycete communities were characterized using metagenomic analysis of the ITS1 region on Illumina MiSeq. From 105 identified operational taxonomic units (OTUs), 45 and 16 oomycete OTUs were identified at species and genus levels, respectively. Pythium was the most prevalent genus and Pythium heterothallicum the most prevalent species in all 3 provinces in both 2013 and 2014. Aphanomyces euteiches, a very important pea root rot pathogen in regions of the prairies, was detected in 57% of sites but at very low abundance (<0.2%). Multivariate analysis revealed differences in the relative abundance of species in oomycete communities between asymptomatic and diseased sites, and among years and provinces. This study demonstrated that deep amplicon sequencing can provide information on the composition and diversity of oomycete communities in agricultural soils.


2011 ◽  
Vol 91 (5) ◽  
pp. 859-872 ◽  
Author(s):  
K. F. Chang ◽  
S. F. Hwang ◽  
B. D. Gossen ◽  
S. E. Strelkov ◽  
G. D. Turnbull ◽  
...  

Chang, K. F., Hwang, S. F., Gossen, B. D., Strelkov, S. E., Turnbull, G. D. and Bing, D. J. 2011. Effect of seeding practices, temperature and seed treatments on fusarium seedling blight of narrow-leaved lupin. Can. J. Plant Sci. 91: 859–872. Narrow-leaved lupin (Lupinus angustifolius) has the potential to become an important pulse crop for the Canadian prairies because of its high protein content and adaptation to a short growing season. However, disease surveys conducted from 2003 to 2007 in Alberta revealed that the crop is vulnerable to seedling blight and root rot caused by Fusarium spp. In field trials, the incidence of seedling blight was reduced by the application of the seed treatment fungicides Apron Maxx RTA, Crown, and Vitaflo 280. Seeding in late May resulted in reduced seedling emergence compared with early or mid-May in some cases, but the results were not consistent. Yield was reduced in the late-sown crop. Seedling emergence was often higher from seed sown at a 2- to 5-cm depth compared with a 7- to 10-cm depth. Yield was lower at seeding rates of 150 seeds m−2 compared with 300 seeds m−2. Under controlled conditions, emergence was greatest in inoculated soils at 25/15°C (day/night). Optimum shoot growth occurred at this temperature and plants were stunted at both higher and lower temperatures. Root growth was greatest at 15/5°C in non-inoculated soils and declined with increasing temperature; root growth was lower, but less variable, among the temperatures in inoculated soils. Root rot severity rose and seed emergence declined with increasing concentration of Fusarium avenaceum inoculum. To successfully grow lupin crops, soils with low Fusarium concentrations must be chosen and the crop should be planted in areas where high temperatures are not common.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hammad Abdelwanees Ketta ◽  
Omar Abd El-Raouf Hewedy

Abstract Background Root rot pathogens reported to cause considerable losses in both the quality and productivity of common bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.). It is an aggressive crop disease with detriment economic influence caused by Fusarium solani and Rhizoctonia solani among other soil-borne fungal pathogens. Destructive plant diseases such as root rot have been managed in the last decades using synthetic pesticides. Main body Seeking of economical and eco-friendly alternatives to combat aggressive soil-borne fungal pathogens that cause significant yield losses is urgently needed. Trichoderma emerged as promising antagonist that inhibits pathogens including those inducing root rot disease. Detailed studies for managing common bean and pea root rot disease using different Trichoderma species (T. harzianum, T. hamatum, T. viride, T. koningii, T. asperellum, T. atroviridae, T. lignorum, T. virens, T. longibrachiatum, T. cerinum, and T. album) were reported both in vitro and in vivo with promotion of plant growth and induction of systemic defense. The wide scale application of selected metabolites produced by Trichoderma spp. to induce host resistance and/or to promote crop yield, may represent a powerful tool for the implementation of integrated pest management strategies. Conclusions Biological management of common bean and pea root rot-inducing pathogens using various species of the Trichoderma fungus might have taken place during the recent years. Trichoderma species and their secondary metabolites are useful in the development of protection against root rot to bestow high-yielding common bean and pea crops.


2013 ◽  
Vol 93 (4) ◽  
pp. 619-625 ◽  
Author(s):  
K. F. Chang ◽  
S. F. Hwang ◽  
H. U. Ahmed ◽  
B. D. Gossen ◽  
G. D. Turnbull ◽  
...  

Chang, K. F., Hwang, S. F., Ahmed, H. U., Gossen, B. D., Turnbull, G. D. and Strelkov, S. E. 2013. Management strategies to reduce losses caused by fusarium seedling blight of field pea. Can. J. Plant Sci. 93: 619–625. Fusarium seedling blight can cause substantial reductions in the stand density of field pea in western Canada. In greenhouse experiments, emergence decreased and root rot severity rose with increasing inoculum density. In field trials in 2007 and 2008 near Edmonton, AB, seeding at different depths and seeding dates did not consistently affect emergence or yield in Fusarium-infested soils. In field experiments, emergence declined significantly with each increase in inoculum level. Also, seed yield were reduced at high levels of disease pressure. Treatment of seed with Apron Maxx improved emergence, nodulation and yield of treatments challenged with inoculum of F. avenaceum in both greenhouse and field experiments. This research demonstrates the need to prevent seedling blight and root rot through proper seed treatment.


1990 ◽  
Vol 115 (1) ◽  
pp. 75-81 ◽  
Author(s):  
W. E. Finch-Savage ◽  
W. G. Pill

SUMMARYIn studies of carrots sown on three dates at Wellesbourne in 1986, mean time to seedling emergence and spread of times to seedling emergence of untreated and fluid-drilled seeds increased as seed-bed moisture at sowing decreased. These differences were not observed with irrigation before sowing.Osmotic priming increased the percentage of seeds with emerged radicles at the time of fluid drilling from 17% in the untreated control to 56%. Irrespective of seed-bed moisture, time to emergence was shorter from primed germinating seeds than from germinating seeds, both treatments giving earlier seedling emergence than untreated seeds. Seedling shoot weight was greater from treated than from untreated seeds.Seed-bed characteristics on unirrigated plots had no effect on seedling emergence when soil moisture was adequate but, where soil moisture was limiting, rolling the seed bed to increase capillarity resulted in 79% emergence compared with the 67% average from seed beds that were not rolled. Application of a soil conditioner to stabilize the seed-bed surface structure generally improved emergence when rain fell soon after sowing. The results suggested that a combination of seed-bed and seed treatments can significantly improve the predictability of crop establishment of carrots on different dates.


Author(s):  
D. J. Stamps

Abstract A description is provided for Aphanomyces euteiches. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Pea, Arabis, pansy, sweet pea, clover, bean, lupin, vetch, lucerne, Melilotus, barley, oats, Echinodorus brevipedicellatus. Conifer seedlings and other hosts were infected by inoculation. DISEASE: Root rot of pea. GEOGRAPHICAL DISTRIBUTION: Asia (Japan); Australia (Tasmania); Europe (UK, Denmark, France, Norway, Sweden, USSR); N. America (USA). (CMI Map 78, ed. 3, 1977). TRANSMISSION: Soil-borne, persisting in the soil for many years. Studies in Wisconsin suggested that A. euteiches may live as a weak parasite in the roots of many plants and occur naturally in some virgin soils (6, 523). Oospores were indicated to be the primary inocula for new outbreaks of pea root rot, zoospores the primary infective agents (39, 646). Survival between pea crops depended on oospore durability and possible alternative hosts, not saprophytic activity (41, 689). Studies were made of population dynamics in the soil (48, 2067) and penetration and infection of roots by zoospores (42, 287).


Sign in / Sign up

Export Citation Format

Share Document