Influence of different irrigation methods and schedules on water productivity of wheat

2020 ◽  
Vol 19 (4) ◽  
pp. 398-403
Author(s):  
P. Suryavanshi ◽  
G.S. Buttar
2022 ◽  
Vol 259 ◽  
pp. 107227
Author(s):  
Yuxin Cao ◽  
Huanjie Cai ◽  
Shikun Sun ◽  
Xiaobo Gu ◽  
Qing Mu ◽  
...  

2021 ◽  
Author(s):  
Nigusie Abebe Sori ◽  
Kebede Nanesa Tufa ◽  
Jemal Mohammed Hassen ◽  
Wondimu Tolcha Adugna ◽  
Fikadu Robi Borana

Abstract Background: Deficit irrigation is one of the techniques used to enhance water productivity without significant yield loss in semiarid areas. Methods: A field experiment was conducted at Werer, Middle Awash Valley during the dry season of 2017/18, 2018/19 and, 2019/20 for three consecutive years to investigate the effects of deficit irrigation levels and furrow irrigation methods on onion yield and water productivity. Split plot design with three replications, in which the irrigation methods (Conventional, Fixed and Alternate Furrow) were assigned to the main plot and the three deficit levels (100% ETc, 75% ETc and 50% ETc), were in the sub-plot. Results: Results indicate that marketable onion bulb yield and water productivity were highly affected by the interaction effect of furrow irrigation methods and irrigation levels (p < 0.05). The highest bulb yield (17580.43 kg ha-) and water productivity (11.79 kg/m3) were obtained from conventional furrow irrigation method with100% ETc and alternate furrow irrigation with 50% ETc respectively. Considering water saved and maximum yield, Onion irrigated by AFI 100% ETC resulted in a 15% yield reduction with up to 50% irrigation water saving as compared to CFI 100% ETc. Conclusion: The present study suggests that, under water limiting conditions, adopting alternate furrow irrigation with 100% ETc can be an alternative to increase water productivity without significant yield reduction.


2017 ◽  
Vol 9 (2) ◽  
pp. 399-409 ◽  
Author(s):  
Hussein M. Al-Ghobari ◽  
Ahmed Z. Dewidar

AbstractAn in-situ field study on two types of irrigation methods and three irrigation regimes was conducted in a sandy loam soil located at King Saud University, Riyadh, Saudi Arabia in 2015 and 2016. The study was to assess the effects of different irrigation methods on physiological and yield responses of tomato crops under water shortage conditions. The tested irrigation methods were surface drip irrigation (SDI) and subsurface drip irrigation (SSDI) systems. Irrigation treatments consisted of three strategies: (1) plants were irrigated with a water depth of 100% of the full irrigation supply; (2) plants were irrigated with a water depth of 80% of the full irrigation supply; and (3) plants were irrigated with a water depth of 60% of the full irrigation supply. Results indicated that water shortage significantly affected yield and quality response for each season. Over a 2-year average, yield increase was greatest in T1-SSDI followed by T2-SSDI and then T1-SDI. The yield response factor was 0.95 and 1.05 for SSDI and SDI, respectively. The highest water use efficiency values were obtained in T2-SSDI (16.3 kg m−3) and T1-SSDI (15.6 kg m−3), and the lowest ones, those estimated in T1-SDI (10.9 kg m−3) and T3-SDI (9.5 kg m−3).


2019 ◽  
Vol 62 (5) ◽  
pp. 1343-1353 ◽  
Author(s):  
James P. Bordovsky

Abstract. The low-energy precision application (LEPA) irrigation concept was developed 40 years ago (ca. 1978) to address the depletion of irrigation water from the Ogallala Aquifer and the sharp increase in pumping costs caused by the 1970s fuel crisis occurring at that time in the Texas High Plains. The LEPA method applies water to the soil surface at low pressure using a tower-truss irrigation system that continually moves through the field. This method brought changes in irrigation equipment and management that resulted in improvements in water productivity, particularly in semi-arid locations with diminishing water supplies. A review of published information pertaining to LEPA history, evaluation, and usage was performed. On landscapes of less than 1% slope, negative crop yield effects caused by irrigation runoff and start-stop system alignment were overcome with appropriately spaced basins, or furrow checks, and multiple irrigations over the course of the growing season. No consistent yield advantage at any level of irrigation was documented by placing water in every furrow (1 m spacing) compared to alternate furrows (2 m spacing). In irrigation treatments having =50% of the estimated full irrigation quantity, LEPA resulted in a 16% yield increase over sprinkler methods, although subsurface drip irrigation (SDI) resulted in a 14% yield increase over LEPA. At irrigation levels &gt;50% of full irrigation, crop yields of sprinkler treatments were only slightly less than those of LEPA, and SDI yields were 7% greater than LEPA. The LEPA irrigation method was the catalyst for innovations in chemigation, no-till planting, and site-specific irrigation. As irrigation water becomes more limited, use and proper management of optimum irrigation methods will be critical. Keywords: Basin tillage, Chemigation, Evapotranspiration, Irrigation methods, LEPA, Low-energy precision application, Runoff, Spray irrigation, Sprinkler irrigation, Uniformity, Water use efficiency.


Author(s):  
P R Kumar ◽  
Santosh S Mali ◽  
A K Singh ◽  
B P Bhatt

An experiment was conducted to test the efficacy of irrigation methods and mulching in seed production of chickpea. Irrigation methods included drip with mulch (DM), drip without mulch (DNM) and check basin (CB) irrigation. Drip irrigation was scheduled at 1-day, 2-day and 7 days interval, while farmers’ practice of check basin irrigation at 7-day interval was considered as control. Plant parameters like height, horizontal spread, dry matter, root length and root spread, and number of pods were significantly influenced by irrigation levels and mulch. Seed yield of 17.7 and 16.8 q/ha was recorded for DM having 1-day and 2-day interval, respectively, which was about 82 and 73% higher over the control. The harvest index increased with increasing irrigation interval and was highest (57.4) under treatments with longer irrigation interval (DM7, DNM7 and CB7). Drip irrigation at 1-day and 2-day interval recorded the water productivities of 0.54 and 0.52 kg/m3, respectively as against 0.30 kg/m3 recorded in farmers practice. Polythene mulch with drip irrigation at 2-day irrigation interval is recommended for improving the yields and water productivity of chickpea cultivated under eastern plateau and hill region of India.


2021 ◽  
Vol 13 (2) ◽  
pp. 677-685
Author(s):  
O. P. Singh ◽  
P. K. Singh

With the growing irrigation water scarcity, the researchers and policymakers are more concerned to improve the irrigation water use efficiency at farmers’ field level. The water-saving technologies provide greater control over water delivery to the crop root zone and reduce the non-beneficial evaporation from the crop field. Water productivity is an important concept for measuring and comparing water use efficiency. The present study tried to estimate the irrigation water use and physical water productivity of cotton under alternate furrow and drip irrigation methods in the Bhavnagar district of Gujarat. Results suggest that crop yield and physical water productivity were higher for cotton irrigated by drip method than alternate furrow method during normal rainfall and drought year. The irrigation water use under the drip method of irrigation was lower as compared to the alternate furrow method. In the case of total water (effective rainfall + irrigation water) use, per hectare crop yield and physical water productivity were higher for the drip method of irrigation than the alternate furrow method of irrigating cotton crop during normal rainfall and drought year. In the case of total water use (effective rainfall + irrigation water), it was lower for drip irrigation than the alternate furrow method of irrigating cotton crop during normal rainfall year and drought year. While estimating total water (effective rainfall + irrigation water) use, it was assumed that there is no return flow of water from the cotton field in the study area under both irrigation methods.


Author(s):  
Kasa Mekonen Tiku ◽  
Shushay Hagoes ◽  
Berhane Yohanes

The study was carried out at the effect of drip and surface irrigation (Furrow irrigation) methods on onion and sesame crops from December 2011 to May 2012 in the Tigray region of Northwest Ethiopia. The objective was to evaluate the family drip irrigation system in comparison with furrow irrigation system in terms of irrigation water productivity (using 100% ETc for both commodities). The water saved in drip irrigation over furrow irrigation was found to be 33% for onion and sesame crops. The irrigation water productivity of onion was 0.9 kg/m3 and 0.55 kg/m3 under drip and furrow irrigation methods respectively. The irrigation water productivity of sesame was 0.14 kg/m3 and 0.045 kg/m3 under drip and furrow irrigation methods respectively.


Sign in / Sign up

Export Citation Format

Share Document