scholarly journals Long-Term Variation of Heavy Metal Pollution Level in Soils and Roadside Dusts along Sightseeing Roadways around Kamikochi

2005 ◽  
Vol 15 (2) ◽  
pp. 287-298 ◽  
Author(s):  
Hirokazu OZAKI ◽  
Izumi WATANABE ◽  
Katsuji KUNO
2018 ◽  
Vol 10 (12) ◽  
pp. 4368 ◽  
Author(s):  
Shixin Ren ◽  
Erling Li ◽  
Qingqing Deng ◽  
Haishan He ◽  
Sijie Li

As heavy metal pollution of arable soil is a significant issue concerning the quality of agricultural products and human health, the rural households’ behaviors have a direct impact on heavy metal content in arable soil and its pollution level, but only a few researches have been done at such microscopic scale. Based on 101 field questionnaires of rural households in Lankao County and the monitoring data on heavy metal of arable soil of each rural household, the kind of rural households’ behaviors which impose obvious influence on heavy metal content of arable soil are investigated via single-factor pollution index, Nemerow pollution index and econometric model in this study. The results show that, rural households’ land utilization mode affects heavy metal content in soil, e.g., the degree of heavy metal pollution of soil for intensive planting is higher than that of traditional planting, viz. vegetable greenhouse > garlic land > traditional crop farmland. The management of cultivated land with due scale is beneficial to reducing heavy metal content in soil, that is, the land fragmentation degree is in direct proportion to heavy metal content in soil, so rural households are encouraged to carry out land circulation and combine the patch into a large one. Excess application of fertilizer, pesticide and organic fertilizer will lead to heavy metal pollution of soil, while agricultural technical training organized by government department and the foundation of agricultural cooperative can promote the technical level and degree of organization of rural households and enable them to be more scientific and rational in agrochemicals selection and application, hence reducing or avoiding heavy metal pollution of soil. Single factor pollution level of heavy metal in the soil for planting various crops is different, so it is recommended to prepare various pollution reduction programs for different land types and pollution levels for the harmony and unity of human-nature system.


2018 ◽  
Vol 159 ◽  
pp. 136-142 ◽  
Author(s):  
Wenya Zhang ◽  
Rui Guo ◽  
Shiwei Ai ◽  
Ying Yang ◽  
Jian Ding ◽  
...  

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 180
Author(s):  
Arup Acharjee ◽  
Zia Ahmed ◽  
Pankaj Kumar ◽  
Rafiul Alam ◽  
M. Safiur Rahman ◽  
...  

River sediment can be used to measure the pollution level in natural water, as it serves as one of the vital environmental indicators. This study aims to assess heavy metal pollution namely Copper (Cu), Iron (Fe), Manganese (Mn), Zinc (Zn), Nickel (Ni), Lead (Pb), and Cadmium (Cd) in Surma River. Further, it compares potential ecological risk index values using Hakanson Risk Index (RI) and Monte Carlo Simulation (MCS) approach to evaluate the environmental risks caused by these heavy metals. in the study area. With obtained results, enrichment of individual heavy metals in the study area was found in the order of Ni > Pb > Cd > Mn > Cu > Zn. Also, variance in MCS index contributed by studied metals was in the order of Cd > Pb > Ni > Zn > Cu. None of the heavy metals, except Ni, showed moderate contamination of the sediment. Risk index values from RI and MCS provide valuable insights in the contamination profile of the river, indicating the studied river is currently under low ecological risk for the studied heavy metals. This study can be utilized to assess the susceptibility of the river sediment to heavy metal pollution near an urban core, and to have a better understanding of the contamination profile of a river.


2017 ◽  
Vol 14 (3-4) ◽  
Author(s):  
Nusreta Djonlagic

In this study the results of a 15-year long monitoring survey on heavy metals in water at Lake Modrac were assessed using pollution indices of heavy metals, such as Heavy metal pollution index HPI, Heavy metal evaluation index HEI and the Degree of contamination CD. The results of the survey on heavy metal pollution of sediment conducted in 2015 were used as input data for the following pollution indices: Concentration factor , Pollution load index PLI, Enrichment factor EF, Index of geo-accumulation Igeo, Ecological risk factor , Potential ecological risk index to the water-body, RI. The results showed a good correlation and the lake sediment was characterized as polluted. Enrichment factors and indices of geo-accumulation of heavy metals were indicated as very high enriched in the sediment, and have been identified as an anthropogenic source of pollution. Cumulative presence in the sediment is assessed through the pollution index, RI, and has been assessed as moderate ecological risk to the lake water-body. The application of pollution indices presents a valuable tool in assessing the long-term pollution status of Lake Modrac.


2013 ◽  
Vol 295-298 ◽  
pp. 1586-1593
Author(s):  
Xiao Qing Zhao ◽  
Hong Hui Yang ◽  
Jian Chen

Based on the farmland soils along the Bijiang River, a main tributary of the international Lantsang-Mekong River flowing through the Jinding Lead-Zinc Deposit, this dissertation makes analyses on the pollution characteristics of spatial variation in farmland soils by adopting the soil sampling and testing analysis and applying single-factor pollution index (SPI) evaluation and Nemerow composite pollution index (NCPI) evaluation. The results indicate that: (1) In accordance with Environmental Quality Standard for Soils (II), the content of Cd contained in the farmland soils has severely exceeded the standard in a large scale, followed by Pb and Zn. However, the content of As is maintained within the specified standard; (2)The SPI values of soils are in the following sequence: Cd>Zn>Pb>As. The pollution level caused by the heavy metal “Cd” to the farmland soils is extremely heavy in a wide range, and a majority of the farmlands are heavily polluted by Zn. The farmlands with moderate pollution by Pb are centered at Plot 2 in the deposit, and only a few farmland soils are moderately polluted by As at Plot 2 in the deposit;(3) Based on the NCPI, the results indicate that the NCPI of the farmland soils has reached to the degree of heavy pollution; (4) It is indicated based on the RPI evaluation that the RPI values of As, Cd, Pb and Zn contained in the farmland soils have exceeded the standard in the following sequence: Pb>Zn>Cd>As, which illustrates that during the development of Jinding Lead-Zinc Deposit in Lanping County, the heavy metals imposing the most profound influence on the soil pollution are Pb and Zn. The heavy metal pollution in the farmland soils from the upper reaches to the lower reaches of the Bijiang River is not only caused by the development of Jinding Lead-Zinc Deposit in Lanping County, but is also associated with its high soil background value;(5) There is a remarkable spatial variation of heavy metal pollution in farmland soils from the upper reaches to the lower reaches of the Bijiang River. Both the SPI and the NCPI values of heavy metals in the soils within the deposit at the upper reaches of the Bijiang River are the lowest; the pollution index of the soils closest to the deposit are the highest, and the pollution index of the soils with a certain distance from the deposit drops swiftly; the pollution index of Plot 4 rises to a certain degree at the middle reaches, and gradually ascends near the Yunlong County seat at Plot 5, however, with a comparatively small growth rates.


1977 ◽  
Vol 9 (11) ◽  
pp. 1281-1289 ◽  
Author(s):  
J Talavage

A methodology is described which can aid in the planning of pollution abatement schedules. The methodology consists of a system dynamics computer-simulation model of the polluted ecosystem, and a powerful dynamic programming optimization procedure which causes the pollution level in the model to be reduced in some optimal manner. An application of the methodology is shown to a situation of heavy metal pollution in northwest Indiana.


Sign in / Sign up

Export Citation Format

Share Document