scholarly journals Examination of Suitable Feed Quantity of Cylinder Oil to Large 2-stroke Slow Speed Marine Diesel Engine

1993 ◽  
Vol 28 (4) ◽  
pp. 286-293
Author(s):  
Tadahiro Kurosawa ◽  
Katsuharu Kobori ◽  
Kaname Tanaka ◽  
Yoshikazu Nagai
Author(s):  
Nader R. Ammar

Marine diesel engines are facing challenges to cope with the emission-reduction regulations set by the international maritime organization (IMO). Hydrogen fuel is one of the alternative fuels which can be used to reduce the exhaust gas emissions from ships. The current paper investigates the effect of using diesel-hydrogen dual fuels on the environmental, energetic and exergetic performance parameters of slow speed marine diesel engine. The investigation is performed using Engineering Equation Solver (EES) software package. As a case study, slow speed diesel engine has been investigated. The results obtained revealed that the energetic and exergetic parameters are influenced by engine load and hydrogen substitution percent. The exergy efficiency is increased by 3.65%, 8.20%, 13.99%, and 21.7% for the hydrogen substitution percentages of 10%, 20%, 30%, and 40%, respectively compared with the diesel engine at full load. Environmentally, CO and CO2 emissions are reduced and NOx emissions are increased as the hydrogen energy content increases. Dual fuel engine with input hydrogen energy fractions of 10% and 20% will comply with the required NOx emission regulations set by IMO after using selective catalytic reduction (SCR) system. It will comply with the required regulations with relative percentages of 96.4% and 98.4%, respectively.


Author(s):  
Dimitrios T. Hountalas ◽  
Georgios N. Zovanos ◽  
David Sakellarakis ◽  
Antonios K. Antonopoulos

Diesel engines are almost exclusively used for propulsion of marine vessels. They are also used for power generation either on vessels or power stations because of their superior efficiency, high power concentration, stability and reliability compared to other alternative power systems. However, a significant drawback of these engines is the production of exhaust gases some of which are toxic and thus can be a threat to the environment. The most important toxic gaseous pollutants found in the exhaust gas of a marine diesel engine are NOx (NO, NO2 etc), CO and SOx. Particulate matter is also a major pollutant of diesel. Currently CO2 is considered to be also a “pollutant”, even though not being directly toxic, due to its impact on global warming. In the Marine sector there exists legislation for marine diesel engine NOx emissions which is getting stricter as we move on towards Tier III. This brings new challenges for the engine makers as far as NOx control and its reduction is concerned. Towards this effort of NOx reduction, modelling has an important role which will become even more important in the future. This is mainly attributed to the large size of marine engines which makes the use of experimental techniques extremely expensive and time consuming. Modelling can greatly assist NOx reduction efforts at least at the early stages of development leading to cost reduction. As known NOx emissions are strongly related to engine performance and thus efforts for their reduction usually have a negative impact on efficiency and particulate matter. Modelling can play an important role towards this direction because optimization techniques can be applied to determine the optimum design for NOx reduction with the lowest impact on efficiency. At present an effort is made to apply an existing well validated multi-zone combustion model for DI diesel engines on a 2-stroke marine diesel engine used to power a tanker vessel. The model is used to determine both engine performance and NOx emissions at various operating conditions. To validate model’s ability to predict performance and NOx emissions, a comparison is given against data obtained from the vessel official NOx file and from on board measurements conducted by the present research group. On board performance measurements were conducted using an in-house engine diagnostic system while emissions were recorded using a portable exhaust gas analyzer. From the comparison of measured against predicted data, the ability of the model to adequately predict performance and NOx emissions of the slow speed 2-stroke marine diesel engine examined is demonstrated. Furthermore, from the application are revealed specific problems related to the application of such models on large slow speed two-stroke engines which is significantly important for their further development.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1856-1860
Author(s):  
Hui Xing ◽  
Lei Guo ◽  
Ji Wu

To predict accurately the stress and deformation of combustion chamber components of large slow speed two stroke marine diesel engines, based on AVL Fire and ANSYS Workbench software, multi-field coupling modeling and analysis technology was employed to carry out the strength analysis for combustion chamber components of crosshead type marine diesel engine. The boundary conditions, i.e., the temperature field distribution, the mean temperature and the mean heat transfer coefficient are obtained firstly. Then the strength analysis for cylinder liner of crosshead type marine diesel engine under the thermal loads, mechanical loads and thermal mechanical coupled loads was conducted. The results show that the strength meets the design requirement and the stress concentration and the deformation of the cylinder liner were mainly dependent on the thermal load.


Sign in / Sign up

Export Citation Format

Share Document