Vertebral Augmentation for Compression Fractures Caused by Malignant Disease

2010 ◽  
Vol 8 (9) ◽  
pp. 1095-1102 ◽  
Author(s):  
Rahul Rastogi ◽  
Trusharth Patel ◽  
Robert A. Swarm

Vertebral compression fractures are common in malignant disease and frequently cause severe back pain. However, management of that pain with conventional medical, radiotherapy, or surgical modalities is often inadequate. Vertebral augmentation techniques, such as vertebroplasty and kyphoplasty, are minimally invasive techniques in which methylmethacrylate bone cement is percutaneously injected into compressed vertebral bodies. Vertebral augmentation often improves mechanical stability of compressed vertebrae, provides pain relief, and may prevent progression of vertebral collapse. Kyphoplasty may provide increased chance for vertebral body height restoration, but the clinical importance of slight change in vertebral body height is unclear. Vertebral augmentation can be used in conjunction with other treatment modalities, and associated pain relief may improve patient tolerance of needed antitumor therapies, such as radiation therapy. Vertebral augmentation is generally very well tolerated, and complications associated with bone cement extravasation beyond the vertebral body have rarely been reported. Because it often provides good to excellent relief of otherwise intractable pain and is generally well tolerated, vertebral augmentation is becoming a first-line agent for management of painful vertebral compression fractures, especially in the setting of malignant disease.

2020 ◽  
Author(s):  
Chongqing Xu ◽  
Mengchen Yin ◽  
Wen Mo

Abstract Background The clinical efficacy of vertebroplasty and kyphoplasty treating osteoporotic vertebral compression fractures (OVCF) has been widely recognized in recent years. However, there are also disadvantages of bone cement leakage (BCL), limited correction of kyphosis and recovery of vertebral height. Nowadays, in view of these shortcomings, vesselplasty has been widely used in clinical practice. The objective of this study is to assess its clinical effect and application value for the treatment of OVCF with peripheral wall damage. Methods/Design: All 62 patients (70 vertebrae) treated for OVCF with peripheral wall damage using vesselplasty were involved and retrospectively analyzed. The data collection included operation time, volume of bone cement, relevant surgical complications, visual analog scale (VAS), Oswestry disability index (ODI), vertebral body height and kyphosis Cobb angle. Results The time of operation was 20–65 (34.5 ± 10.5) minutes. The volume of bone cement was 3–8 (5.3 ± 1.3) ml. VAS and ODI at different time points after operation were decreased compared with before operation (all P < 0.05). There were no statistical differences between VAS or ODI at different postoperative time points (P > 0.05). Vertebral body height and Cobb angle at different time points after operation were improved compared with before operation (all P < 0.05). There were no statistical differences between vertebral body height or Cobb angle at different postoperative time points (all P > 0.05). Conclusion Vesselplasty can reduce the risk of BCL and better control the dispersion of bone cement in the treatment of OVCF. It has a definite effect in relieving pain, restoring the vertebral body height and correcting the kyphosis caused by injured vertebrae, especially in OVCF with peripheral wall damage. Therefore, vesselplasty is safe and worthy of clinical application.


2021 ◽  
Author(s):  
Jesús Payo-Ollero ◽  
Rafael Llombart-Blanco ◽  
Carlos Villas ◽  
Matías Alfonso

Abstract Changes in vertebral body height depend on various factors which were analyzed in isolation and not as a whole. The aim of this study is to analyze what factors might influence restoration of vertebral body height after vertebral augmentation. We analyzed 48 patients (108 vertebrae) with osteoporotic vertebral fractures underwent vertebral augmentation when conservative treatment proved unsatisfactory. Analyses were carried out at the time of the fracture, during surgery (pre-cementation and post-cementation), at first medical check-up (6 weeks post-surgery) and at last medical check-up. Average vertebral height was measured and differences from preoperative values calculated at each timepoint. Pearson correlation coefficient and linear multivariable regression were carried out at the different timepoints. The time since vertebral fracture was 60.4 ± 41.7 days. Patients’ average age was 70.9 ± 9.3-years. The total follow-up was 1.43 ± 1-year. After vertebral cementation there was an increase in vertebral body height of + 0.3cm (13.6%). During post-operative follow-up, there was a progressive collapse of the vertebral body and pre-surgical height was reached. The factors that most influenced vertebral height restoration were: grade III collapse, intervertebral-vacuum-cleft (IVVC), and use of a flexible trocar before cement augmentation. The factor that negatively influenced vertebral body height restoration was location in the thoracolumbar spine.


Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 244-245
Author(s):  
John Amburgy ◽  
Douglas Beall ◽  
Richard Easton ◽  
Douglas Linville ◽  
Sanjay Talati ◽  
...  

Abstract INTRODUCTION Osteoporotic and neoplastic vertebral compression fractures (VCF) are common and painful. In the U.S., there are more than 1.5 million vertebral fractures annually and 40% of those over the age of 80 will experience this pathology, threatening quality of life and increasing morbidity and mortality. Kyphoplasty is a minimally invasive surgery to stabilize the fracture and recent EVOLVE analysis demonstrated minimal improvement in kypohotic angulation or vertebral body height, however, patients demonstrated significant improvements in pain, disability, quality of life and overall health. METHODS Prospective, multicenter 12-month clinical study of outcomes pertaining to activities of daily living, pain, quality of life, and safety parameters in a Medicare-eligible population treated with kyphoplasty for painful acute or subacute VCFs associated with osteoporosis or cancer. RESULTS >NRS back pain improved from 8.7 (scale 0–10) by 5.2, 5.4, 6.0, 6.2 and 6.3 points, at the 7-day, and the 1, 3, 6 and 12-month time points, respectively. ODI improved from 63.4 (scale 0–100) by 30.5, 35.3, 36.3 and 36.2 points, at the 1, 3, 6 and 12-month time points, respectively. The SF-36 PCS was 24.2 at baseline (scale 0–100) and improved 10.7, 12.4, 13.4 and 13.8 points, at 1, 3, 6 and 12 months. The EQ-5D was 0.383 points (scale 0–1) and improved 0.316, 0.351, 0.356 and 0.358 points, at 1, 3, 6 and 12 months. All measures were statistically significant with P < 0.001 at every time point. Despite these significant improvements in pain, disability, qulity of life and overall health, there were only modest, but significant improvements in kyphotic angulation (1.1° improvement) and vertebral body height (4% improvement). CONCLUSION This large, prospective, multicenter study trial demonstrates that utilization of kyphoplasty for vertebral compression fractures provides significant improvements in pain, disability, quality of life, and overall health despite modest improvements in kyphotic angulation and vertebral body height in Medicare-eligible patients.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 9535-9535
Author(s):  
B. Georgy ◽  
W. Wong

9535 Background: Percutaneous cement injection procedures (eg vertebroplasty, kyphoplasty) are used successfully to palliate patients with painful osteoporotic vertebral compression fractures (VCFs). When VCFs occur because of malignant lesions however, treatment can be challenging; often by the time symptoms occur, the tumor has extended into the epidural tissue and is associated with posterior cortical disruption. As a result, patients have a higher likelihood of cement extravasation outside the vertebral body, thought to be associated with increased complication risk. This study was to investigate clinical viability and effectiveness of a technique designed to improve control of bone cement placement over standard methods when treating patients with symptomatic VCFs caused by malignancy. Methods: All patients had intractable pain determined to be associated with VCFs caused by metastasized malignancy. The procedure involved using a plasma-mediated radiofrequency-based device to debulk tissue and etch a void within the affected vertebral body and then filling the void and adjacent interstices with bone cement to stabilize the vertebral body and relieve pain. Results: 28 patients (36 vertebral bodies) with various types of metastatic lesions were treated. No evidence of cement extravasation outside the vertebral boundary was detected in 34/36 (94%) cases, even in cases with severe posterior cortical compromise and prominent epidural involvement pre-operatively. In the 2 observed cases, cement extravasation was clinically inconsequential. All treated patients reported marked pain relief. No patients were prevented from continuing other oncologic treatments. Conclusions: Tissue removal to create a void before injecting bone cement into a vertebral body compromised by malignancy may reduce the complication rate observed when injecting cement. This technique may redirect cement away from the spinal canal, notably in cases with posterior cortical defect and epidural extension, while also improving interdigitation of cement and decreasing risk of metastatic embolization. The resulting palliation potentially improves functionality and quality of life during and does not appear to affect the effectiveness of continued oncologic treatment. [Table: see text]


2011 ◽  
Vol 393-395 ◽  
pp. 1064-1068 ◽  
Author(s):  
Bin Zhang ◽  
Min Dai ◽  
Ya Min Tang

Study Design A retrospective study of patients who underwent kyphoplasty at a single institute. Objective To examine and compare the safety and long-term radiographic and clinical effects of unilateral or bilateral kyphoplasty to treat symptomatic vertebral compression fractures (VCF). Summary of Background Data Kyphoplasty (KP) involves placement of inflatable bone tamp via unilateral and bilateral approaches. Few randomized study comparing the radiographic and clinical outcomes using unilateral and bilateral approaches was reported. Methods 50 patients with osteoporotic vertebral compression fractures (VCF) were allocated into two groups adopting unilateral or bilateral kyphoplasty. Preoperative and postoperative pain scores, Vertebral body height were compared and analyzed. Results Both unilateral and bilateral kyphoplasty resulted in significant pain reduction. Significant increases of midline vertebral body height were recorded for both groups after surgery and maintained for the period of follow-up. Asymptomatic cement extravasation occurred in 8 of 50 patients, and 2 patients developed additional fractures at untreated levels during the period of follow-up. Conclusions Both unilateral and bilateral KP can improve clinical effects of osteoporotic VCF and result in significant vertebral height restoration for at least 18 months after treatment.


2019 ◽  
Vol 10 ◽  
pp. 54 ◽  
Author(s):  
Nancy E. Epstein

Background:Although the majority of patients with traumatic/atraumatic osteoporotic vertebral compression fractures (OVCFs) may be managed with non-surgical treatment (NST), a subset (e.g. 40%) with significant pain, loss of vertebral height, and other factors may warrant percutaneous vertebroplasty (V), or percutaneous kyphoplasty (K).Methods:We compared the impact of these three treatment modalities, V, K, or NST, for managing OVCFs.Results:In several studies, both V and K resulted in comparable improvement in pain relief, postoperative kyphotic angles, increased anterior vertebral heights, and frequency of leakage of bone cement. One study evaluating 16 RCT’s (Randomized Controlled Studies), however, observed K significantly; “decreased the kyphotic wedge angle, increased the postoperative vertebral body height, and decreased the risk of cement leakage vs. V”. Further, in some series, both V and K resulted in higher quality of life scores and better pain relief vs. NST, while other studies showed V was superior to K. Further, although the risk of adjacent level fractures (ALF) following V, K, and NST were comparable in most studies, one clearly demonstrated NST had the lowest incidence of ALF. Despite all these findings, most studies concluded outcomes were comparable for all 3 groups.Conclusions:Although most OVCFs are still managed with non-surgical treatment (NST), a subset (e.g. about 40%) may warrant V or K. Although both V and K have been shown to result in significantly better pain relief, higher quality of life scores, increased postoperative vertebral body height compared with NST, outcomes for all 3 groups remained the same.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chi-Jung Chiang ◽  
Jin-Wei Huang ◽  
Shu-Mei Chen ◽  
Jiann-Her Lin

AbstractKyphoplasty (KP) with intravertebral reduction devices (IRD) was reported to be associated with better radiological outcomes than KP with balloons (BK) for osteoporotic vertebral compression fractures (OVCFs). However, the mechanical factors that contribute to the radiological benefits of IRDs require further investigation. To probe the mechanical factors, this retrospective matched cohort study was designed, including the older patients with painful OVCFs and treated with KP. We compared the clinical and radiological outcomes between KP with an IRD and BK, where vertebral body height and kyphotic angle of the cemented vertebrae were measured pre- and postoperatively; clinical outcomes were collected by telephone interviews. The restoration and maintenance ratio suggested that IRDs were associated with favorable effects long-term wise in anterior to middle vertebral body and kyphosis than BK in patients. The gathered results concluded the radiological benefits of IRD regarding both its efficient restoration and maintenance in vertebrae.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Qiujiang Li ◽  
Xingxia Long ◽  
Yinbin Wang ◽  
Xiaomin Fang ◽  
Donggeng Guo ◽  
...  

Abstract Introduction New vertebral compression fractures (NVCFs) are adverse events after vertebral augmentation of osteoporotic vertebral compression fractures (OVCFs). Predicting the risk of vertebral compression fractures (VCFs) accurately after surgery is still a significant challenge for spinal surgeons. The aim of our study was to identify risk factors of NCVFs after vertebral augmentation of OVCFs and develop a nomogram. Methods We retrospectively reviewed the medical records of patients with OVCFs who underwent percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP). Patients were divided into the NVCFs group and control group, base on the patients with or without NVCFs within 2 years follow-up period after surgery. A training cohort of 403 patients diagnosed in our hospital from June 2014 to December 2016 was used for model development. The independent predictive factors of postoperative VCFs were determined by least absolute shrinkage and selection operator (LASSO) logistic regression, univariate analysis and multivariate logistic regression analysis. We provided a nomogram for predicting the risk of NVCFs based on independent predictive factors and used the receiver operating characteristic curve (ROC), calibration curve, and decision curve analyses (DCA) to evaluated the prognostic performance. After internal validation, the nomogram was further evaluated in a validation cohort of 159 patients included between January 2017 and June 2018. Results Of the 403 patients in the training cohort, 49(12.16%) were NVCFs at an average of 16.7 (1 to 23) months within the 2 years follow-up period. Of the 159 patients in the validation cohort, 17(10.69%) were NVCFs at an average of 8.7 (1 to 15) months within the 2 years follow-up period. In the training cohort, the proportions of elderly patients older than 80 years were 32.65 and 13.56% in the NVCFs and control group, respectively (p = 0.003). The percentages of patients with previous fracture history were 26.53 and 12.71% in the NVCFs and control group, respectively (p = 0.010). The volume of bone cement were 4.43 ± 0.88 mL and 4.02 ± 1.13 mL in the NVCFs and Control group, respectively (p = 0.014). The differences have statistical significance in the bone cement leakage, bone cement dispersion, contact with endplate, anti-osteoporotic treatment, post-op Cobb angle and Cobb angle restoration characteristics between the two groups. The model was established by multivariate logistic regression analysis to obtain independent predictors. In the training and validation cohort, the AUC of the nomogram were 0.882 (95% confidence interval (CI), 0.824-0.940) and 0.869 (95% CI: 0.811-0.927), respectively. The C index of the nomogram was 0.886 in the training cohort and 0.893 in the validation cohort, demonstrating good discrimination. In the training and validation cohort, the optimal calibration curves demonstrated the coincidence between prediction and actual status, and the decision curve analysis demonstrated that the full model had the highest clinical net benefit across the entire range of threshold probabilities. Conclusion A nomogram for predicting NVCFs after vertebral augmentation was established and validated. For patients evaluated by this model with predictive high risk of developing postoperative VCFs, postoperative management strategies such as enhance osteoporosis-related health education and management should be considered.


Sign in / Sign up

Export Citation Format

Share Document