scholarly journals Anatomical characterisation of wood decay pattern in Azadirachta indica A. Juss. by the white-rot fungi Irpex lacteus Fr. (Fr.) and Phanerochaete chrysosporium Burds.

2015 ◽  
Author(s):  
Rina Dhirajlal Koyani ◽  
Kishore Shankarsinh Rajput
1985 ◽  
Vol 63 (2) ◽  
pp. 337-339 ◽  
Author(s):  
Elmer L. Schmidt

Influences of eight saturated aliphatic acids (C5–C10, C12, and C16) on basidiospores of four isolates of wood-decay fungi (Poria tenuis and Trametes hispida, white rot fungi, and two isolates of the brown rot fungus Gloeophyllum trabeum) were observed in vitro. Spore responses after 24 h on malt extract agar containing 10, 102 or 103 ppm of each acid included normal germination, delay of germ tube emergence, vacuolation and degeneration of spore cytoplasm, and prevention of germ tube development without spore destruction. Acids of chain length C5–C10 prevented spore germination and killed spores of all fungi at concentrations of 20–50 ppm in media, whereas other acids tested were less active. Spore germination assay of decay fungi may prove useful as a screening tool to compare potency of wood preservatives.


1986 ◽  
Vol 64 (8) ◽  
pp. 1611-1619 ◽  
Author(s):  
James E. Adaskaveg ◽  
Robert L. Gilbertson

The in vitro wood decay abilities of Ganoderma lucidum (W. Curt.: Fr.) Karst. and G. tsugae Murr. were studied using the following woods in agar block decay chambers: Vitis vinifera L., Quercus hypoleucoides A. Camus, Prosopis velutina Woot., Abies concolor (Gord. & Glend.) Lindl. ex. Hildebr., and Pseudotsuga menziesii (Mirb.) Franco. Grape wood lost the most weight while mesquite the least. Ganoderma lucidum isolates generally caused greater weight loss of all woods than did G. tsugae isolates. The range of the percent weight losses varied with the wood. Both Ganoderma species caused simultaneous decay in all woods. However, chemical analyses of the decayed blocks indicated that selective delignification by both species also occurred in grape and white fir blocks. Chemical analysis of the decayed oak blocks indicated the percentages of lignin and holocellulose were not statistically different from the controls. However, there was a trend towards delignification. The analyses of the Douglas-fir blocks indicated only simultaneous decay. Scanning electron microscopy demonstrated selective delignification and simultaneous decay of all woods tested. However, the extent of the delignification differed among the wood species. Delignification appeared mainly in areas of tracheids or fiber tracheids, while the rays were simultaneously decayed.


Genetics provides an approach to the analysis of the complex function of lignin biodegradation, through the isolation of mutants and the creation of gene libraries for the identification of genes and their products. However, white-rot fungi (for example, Phanerochaete chrysosporium ) have not so far been analysed from this point of view, and there is the challenge of establishing such genetics. P. chrysosporium is convenient experimentally because relatively few genes are switched on at the onset of ligninolytic activity. We describe the isolation of clones carrying genes expressed specifically in the ligninolytic phase, the development of a general strategy for mapping such clones, and the elucidation of the mating system of this organism. Another objective is the development of methods for transforming DNA into P. chrysosporium . This would allow the use of site-directed mutagenesis to analyse the functioning of ligninases, and the control of expression of the corresponding genes. The use of genetic crosses for strain improvement and the identification of components of the system are also discussed.


Mycologia ◽  
1988 ◽  
Vol 80 (1) ◽  
pp. 124-126 ◽  
Author(s):  
Kevin T. Smith ◽  
Walter C. Shortle

1983 ◽  
Vol 61 (1) ◽  
pp. 171-173 ◽  
Author(s):  
E. L. Schmidt ◽  
D. W. French

Successive collections of basidiospores, produced in culture from the same hymenial areas of four species of wood decay fungi, were tested for spore germination percentage on malt extract agar under controlled conditions. Spores from white rot fungi retained high germination levels after 5 weeks of spore production, but germination averages for brown rot fungi decreased by more than 50%. Such variation should be considered in wood pathology research using spore germination bioassay.


2020 ◽  
Vol 21 (2) ◽  
pp. 416
Author(s):  
Angel De La Cruz Pech-Canul ◽  
Javier Carrillo-Campos ◽  
María de Lourdes Ballinas-Casarrubias ◽  
Rosa Lidia Solis-Oviedo ◽  
Selena Karina Hernández-Rascón ◽  
...  

Manganese peroxidases (MnP) from the white-rot fungi Phanerochaete chrysosporium catalyse the oxidation of Mn2+ to Mn3+, a strong oxidizer able to oxidize a wide variety of organic compounds. Different approaches have been used to unravel the enzymatic properties and potential applications of MnP. However, these efforts have been hampered by the limited production of native MnP by fungi. Heterologous expression of MnP has been achieved in both eukaryotic and prokaryotic expression systems, although with limited production and many disadvantages in the process. Here we described a novel molecular approach for the expression and purification of manganese peroxidase isoform 1 (MnP1) from P. chrysosporium using an E. coli-expression system. The proposed strategy involved the codon optimization and chemical synthesis of the MnP1 gene for optimised expression in the E. coli T7 shuffle host. Recombinant MnP1 (rMnP1) was expressed as a fusion protein, which was recovered from solubilised inclusion bodies. rMnP1 was purified from the fusion protein using intein-based protein purification techniques and a one-step affinity chromatography. The designated strategy allowed production of an active enzyme able to oxidize guaiacol or Mn2+.


Holzforschung ◽  
2008 ◽  
Vol 62 (6) ◽  
Author(s):  
Jonathan S. Schilling ◽  
Kaitlyn M. Bissonnette

AbstractWood-degrading fungi commonly grow in contact with calcium (Ca)-containing building materials and may import Ca and iron (Fe) from soil into forest woody debris. For brown rot fungi, imported Ca2+may neutralize oxalate, while Fe3+may facilitate Fenton-based degradation mechanisms. We previously demonstrated, in two independent trials, that degradation of spruce by wood-degrading fungi was not promoted when Ca or Fe were imported from gypsum or metallic Fe, respectively. Here, we tested pine wood with lower endogenous Ca than the spruce blocks used in prior experiments, and included a pure gypsum treatment and one amended with 1% with FeSO4. Electron microscopy with microanalysis verified that brown rot fungiSerpula himantioidesandGloeophyllum trabeumand the white rot fungusIrpex lacteusgrew on gypsum and produced iron-free Ca-oxalate crystals away from the gypsum surface. Wood cation analysis verified significant Fe import by both brown rot isolates in Fe-containing treatments. Wood degradation was highest in Fe-gypsum-containing treatments for all three fungi, although only wood degraded byI. lacteushad significant Ca import. We suggest that Fe impurities may not exacerbate brown rot, and that both brown and white rot fungi may utilize Ca-containing materials.


2010 ◽  
Vol 76 (11) ◽  
pp. 3599-3610 ◽  
Author(s):  
Amber Vanden Wymelenberg ◽  
Jill Gaskell ◽  
Michael Mozuch ◽  
Grzegorz Sabat ◽  
John Ralph ◽  
...  

ABSTRACT Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media containing ball-milled aspen or glucose as the sole carbon source. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a total of 67 and 79 proteins were identified in the extracellular fluids of P. placenta and P. chrysosporium cultures, respectively. Viewed together with transcript profiles, P. chrysosporium employs an array of extracellular glycosyl hydrolases to simultaneously attack cellulose and hemicelluloses. In contrast, under these same conditions, P. placenta secretes an array of hemicellulases but few potential cellulases. The two species display distinct expression patterns for oxidoreductase-encoding genes. In P. placenta, these patterns are consistent with an extracellular Fenton system and include the upregulation of genes involved in iron acquisition, in the synthesis of low-molecular-weight quinones, and possibly in redox cycling reactions.


Sign in / Sign up

Export Citation Format

Share Document