scholarly journals Thrombin: An Approach to Developing a Higher-Order Reference Material and Reference Measurement Procedure for Substance Identity, Amount, and Biological Activities

Author(s):  
Craig M. Jackson ◽  
M. Peter Esnouf ◽  
David L. Duewer

Thrombin, the proteolytic enzyme that catalyzes the transformation of soluble fibrinogen to the polymerized fibrin clot, participates in multiple reactions in blood coagulation in addition to the clotting reaction. Although reference materials have existed for many years, structural characterization and measurement of biological activity have never been sufficient to permit claims of clear metrological traceability for the thrombin preparations. Our current state-of-the-art methods for protein characterization and determination of the catalytic properties of thrombin now make it practical to develop and characterize a metrologically acceptable reference material and reference measurement procedure for thrombin. Specifically, α-thrombin, the biologically produced protease formed during prothrombin activation, is readily available and has been extensively characterized. Dependences of thrombin proteolytic and peptide hydrolytic activities on a variety of substrates, pH, specific ions, and temperature are established, although variability remains for the kinetic parameters that describe thrombin enzymatic action. The roles of specific areas on the surface of the thrombin molecule (exosites) in substrate recognition and catalytic efficiency are described and characterized. It is opportune to develop reference materials of high metrological order and technical feasibility. In this article, we review the properties of α-thrombin important for its preparation and suggest an approach suitable for producing a reference material and a reference measurement procedure that is sensitive to thrombin’s catalytic competency on a variety of substrates.

Author(s):  
International Federation of Clinica Thienpont ◽  
Graham Beastall ◽  
Nicholas D. Christofides ◽  
James D. Faix ◽  
Tamio Ieiri ◽  
...  

AbstractIn the present paper the IFCC WG-STFT recommends and provides the rationale to establish metrological traceability of serum free thyroxine (FT4) measurements to a candidate international conventional reference measurement procedure. It is proposed that this procedure be based on equilibrium dialysis combined with determination of thyroxine in the dialysate with a trueness-based reference measurement procedure. The measurand is thus operationally defined as “thyroxine in the dialysate from equilibrium dialysis of serum prepared under defined conditions”. With regard to the trueness-based reference measurement procedure, the WG-STFT recommends use of an isotope dilution-liquid chromatography/tandem mass spectrometry (ID-LC/tandem MS) procedure for total thyroxine that has been optimized towards measurement at picomolar concentration levels and that is listed in the database of the Joint Committee for Traceability in Laboratory Medicine (JCTLM). For calibration, the purified thyroxine material IRMM-468 (resulting from a project funded by the European Commission and recently submitted to the JCTLM) is proposed. The WG-STFT stresses that according to this recommendation it is a prerequisite to strictly adhere to the defined equilibrium dialysis procedure, whereas it is permissible to introduce variants in the ID-LC/tandem MS procedure.Clin Chem Lab Med 2007;45:934–6.


2012 ◽  
Vol 58 (4) ◽  
pp. 768-776 ◽  
Author(s):  
Selvin H Edwards ◽  
Shelton L Stribling ◽  
Susan D Pyatt ◽  
Mary M Kimberly

Abstract BACKGROUND The CDC's Lipid Standardization Program established the chromotropic acid (CA) reference measurement procedure (RMP) as the accuracy base for standardization and metrological traceability for triglyceride testing. The CA RMP has several disadvantages, including lack of ruggedness. It uses obsolete instrumentation and hazardous reagents. To overcome these problems the CDC developed an isotope dilution GC-MS (ID-GC-MS) RMP for total glycerides in serum. METHODS We diluted serum samples with Tris-HCl buffer solution and spiked 200-μL aliquots with [13C3]-glycerol. These samples were incubated and hydrolyzed under basic conditions. The samples were dried, derivatized with acetic anhydride and pyridine, extracted with ethyl acetate, and analyzed by ID-GC-MS. Linearity, imprecision, and accuracy were evaluated by analyzing calibrator solutions, 10 serum pools, and a standard reference material (SRM 1951b). RESULTS The calibration response was linear for the range of calibrator concentrations examined (0–1.24 mmol/L) with a slope and intercept of 0.717 (95% CI, 0.7123–0.7225) and 0.3122 (95% CI, 0.3096–0.3140), respectively. The limit of detection was 14.8 μmol/L. The mean %CV for the sample set (serum pools and SRM) was 1.2%. The mean %bias from NIST isotope dilution MS values for SRM 1951b was 0.7%. CONCLUSIONS This ID-GC-MS RMP has the specificity and ruggedness to accurately quantify total glycerides in the serum pools used in the CDC's Lipid Standardization Program and demonstrates sufficiently acceptable agreement with the NIST primary RMP for total glyceride measurement.


2019 ◽  
Vol 15 (3) ◽  
pp. 5-13
Author(s):  
L. A. Konopelko ◽  
A. V. Kolobova ◽  
O. V. Fatina

Currently, in the Russian Federation, the metrological traceability of certified reference materials of the composition of gas mixtures in cylinders under pressure produced by manufacturers of certified reference materials is carried out in accordance with GOST 8.578-2014. Considering that certified reference materials of the composition of gas mixtures in cylinders under pressure are used for testing to approye the type of measuring instruments, verification, calibration, and graduation of gas-analytical measuring instruments used to control explosive gases and vapors, harmful components in the atmospheric air and the air of the working area, emissions from vehicles and enterprises, to control technological processes, the quality of hydrocarbon products, etc., the issue of ensuring the quality of seriously produced certified reference materials (about 100.000 cylinders with gas mixtures per year) is important. To ensure the quality of certified reference materials of gas mixtures in cylinders under pressure, mass-produced by manufacturers of certified reference materials, we offer the following actions:– manufacturers of certified reference materials’ passing of mandatory accreditation for compliance with the requirements of GOST ISO Guide 34–2014 and GOST ISO Guide 35–2015;– manufacturers of certified reference materials’ constant participation in the proficiency testing programs through interlaboratory tests;– actualizing and refining the existing set of standards defining the requirements for the entire life cycle of a certified reference material of a gas mixture in a cylinder under pressure;– improving the method of certification of a reference material by calculating the value of the expanded uncertainty of the reference material and the introducting a new coefficient «technological reserve».


2011 ◽  
Vol 57 (4) ◽  
pp. 614-622 ◽  
Author(s):  
Selvin H Edwards ◽  
Mary M Kimberly ◽  
Susan D Pyatt ◽  
Shelton L Stribling ◽  
Kara D Dobbin ◽  
...  

BACKGROUND Our purpose was to establish a mass spectrometry reference measurement procedure (RMP) for cholesterol to use in the CDC's standardization programs. We explored a gas chromatography–isotope dilution mass spectrometry (GC-IDMS) procedure using a multilevel standard calibration curve to quantify samples with varying cholesterol concentrations. METHODS We calibrated the mass spectrometry instrument by isotope dilution with a pure primary standard reference material and an isotopically enriched cholesterol analog as the internal standard (IS). We diluted the serum samples with Tris-HCl buffer (pH 7.4, 0.05 mol/L, 0.25% Triton X-100) before analysis. We used 17 serum pools, 10 native samples, and 2 standard reference materials (SRMs). We compared the GC-IDMS measurements with the CDC's modified Abell–Levy–Brodie–Kendall (AK) RMP measurements and assessed method accuracy by analyzing 2 SRMs. We evaluated the procedure for lack of interference by analyzing serum spiked with a mixture of 7 sterols. RESULTS The mean percent bias between the AK and the GC-IDMS RMP was 1.6% for all samples examined. The mean percent bias from NIST's RMP was 0.5% for the SRMs. The total %CVs for SRM 1951b levels I and II were 0.61 and 0.73%, respectively. We found that none of the sterols investigated interfered with the cholesterol measurement. CONCLUSIONS The low imprecision, linear response, lack of interferences, and acceptable bias vs the NIST primary RMP qualifies this procedure as an RMP for determining serum cholesterol. The CDC will adopt and implement this GC-IDMS procedure for cholesterol standardization.


Author(s):  
Daisuke Manita ◽  
Hiroshi Yoshida ◽  
Isao Koyama ◽  
Masakazu Nakamura ◽  
Yuji Hirowatari

Abstract Background A new lipoprotein testing method based on anion-exchange HPLC (AEX-HPLC) was recently established. We verified the accuracy of LDL-C levels, a primary therapeutic target for the prevention of cardiovascular disease (CVD), measured by AEX-HPLC comparing with LDL-C levels measured by beta quantification-reference measurement procedure (BQ-RMP), homogenous assays, and calculation methods. Methods We compared LDL-C levels measured by AEX-HPLC (adLDL-Ch: LDL-Ch and IDL-Ch) and BQ-RMP using blood samples from 52 volunteers. AdLDL-Ch levels were also compared with those measurements by homogeneous assays and calculation methods (Friedewald equation, Martin equation, and Sampson equation) using blood samples from 411 participants with dyslipidemia and/or type 2 diabetes. Results The precision and accuracy of adLDL-Ch were verified by BQ-RMP. The mean percentage bias [bias (%)] for LDL-C was 1.2%, and the correlation was y = 0.990x + 3.361 (r = 0.990). These results met the acceptable range of accuracy prescribed by the National Cholesterol Education Program. Additionally, adLDL-Ch levels were correlated with LDL-C levels measured by the 2 homogeneous assays (r > 0.967) and the calculation methods (r > 0.939), in serum samples from patients with hypertriglyceridemia. Conclusions AEX-HPLC is a reliable method for measuring LDL-C levels for CVD risk in daily clinical laboratory analyses.


Sign in / Sign up

Export Citation Format

Share Document