lc tandem ms
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 7)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 29 (3) ◽  
pp. 502-509
Author(s):  
Yun-Hua Hsu ◽  
Ming-Chih Fang ◽  
Shou-Chieh Huang ◽  
Ya-Min Kao ◽  
Su-Hsiang Tseng ◽  
...  

2019 ◽  
Vol 102 (6) ◽  
pp. 1689-1694
Author(s):  
Ujwal S. Patil ◽  
Sarah King ◽  
Sean Holleran ◽  
Kristen White ◽  
Cheryl Stephenson ◽  
...  

Changing weather conditions have heightened the risk of growth of mycotoxigenic molds on crops and various agricultural commodities. Mycotoxins, which are linked to carcinogenic and nephrotoxic effects in animals and humans, have been traditionally analyzed by immunoassays, gas, and LC techniques with spectrophotometric detectors. This review discusses the current techniques and challenges in commercial settings associated with the analysis of mycotoxins in unique matrices such as animal feeds, herbal products, and dietary supplements containing botanicals. Because of the advantages and growing acceptance of LC-tandem MS (MS/MS) over traditional approaches, discussion is mainly based on LC-MS/MS-based approaches. Considering the impact of sample preparation on accuracy of quantitative results, discussion about pros and cons of recently introduced sample preparation techniques is integrated with analytical methods. A section of the review explains the importance and availability of reference materials for mycotoxins. The present discussion provides good insight into the current challenges and developments during mycotoxin analysis of feed and botanicals and addresses the need for researchers in terms of an official MS-based method.


2019 ◽  
Vol 102 (6) ◽  
pp. 1642-1650 ◽  
Author(s):  
Melissa M. Phillips ◽  
Tomás M. López Seal ◽  
Jennifer M. Ness ◽  
Kai Zhang

Background: Matrix-matched reference materials (RMs) are critical for adequate quality assurance of extraction, digestion, separation, and/or detection processes for analytes of interest in foods and dietary supplements. The accurate determination of mycotoxins in foods is an international concern. While RMs for mycotoxins are available from a variety of RM producers, these mainly address a single mycotoxin or group of mycotoxins and therefore require the use of multiple RMs for multitarget methods. Objective: To address the increasing needs of laboratories moving toward LC-MS-based multimycotoxin analysis, the U.S. National Institute of Standards and Technology (NIST) collaborated with the U.S. Food and Drug Administration (FDA) to produce a naturally incurred RM for multiple mycotoxins in corn. Methods: Homogeneity of the RM has been assessed using a stratified random sampling of the final product based on mycotoxin mass fractions measured by the FDA and NIST. Multiple sample sizes were evaluated to maximize homogeneity in the obtained results. The mycotoxin levels in the final materials have been evaluated via interlaboratory comparison and isotope dilution LC–tandem MS measurements made at the FDA and NIST. The final value assignment combined results from these data sets. Conclusions: The study successfully developed a certified RM, SRM 1565 Mycotoxins in Corn, and a workflow for the future development of multimycotoxin RMs in different matrices.


2019 ◽  
Vol 102 (6) ◽  
pp. 1642-1650 ◽  
Author(s):  
Melissa M Phillips ◽  
Tomás M López Seal ◽  
Jennifer M Ness ◽  
Kai Zhang

Abstract Background: Matrix-matched reference materials (RMs) are critical for adequate quality assurance of extraction, digestion, separation, and/or detection processes for analytes of interest in foods and dietary supplements. The accurate determination of mycotoxins in foods is an international concern. While RMs for mycotoxins are available from a variety of RM producers, these mainly address a single mycotoxin or group of mycotoxins and therefore require the use of multiple RMs for multitarget methods. Objective: To address the increasing needs of laboratories moving toward LC-MS-based multimycotoxin analysis, the U.S. National Institute of Standards and Technology (NIST) collaborated with the U.S. Food and Drug Administration (FDA) to produce a naturally incurred RM for multiple mycotoxins in corn. Methods: Homogeneity of the RM has been assessed using a stratified random sampling of the final product based on mycotoxin mass fractions measured by the FDA and NIST. Multiple sample sizes were evaluated to maximize homogeneity in the obtained results. The mycotoxin levels in the final materials have been evaluated via interlaboratory comparison and isotope dilution LC–tandem MS measurements made at the FDA and NIST. The final value assignment combined results from these data sets. Conclusions: The study successfully developed a certified RM, SRM 1565 Mycotoxins in Corn, and a workflow for the future development of multimycotoxin RMs in different matrices.


2019 ◽  
Vol 102 (6) ◽  
pp. 1689-1694
Author(s):  
Ujwal S Patil ◽  
Sarah King ◽  
Sean Holleran ◽  
Kristen White ◽  
Cheryl Stephenson ◽  
...  

Abstract Changing weather conditions have heightened the risk of growth of mycotoxigenic molds on crops and various agricultural commodities. Mycotoxins, which are linked to carcinogenic and nephrotoxic effects in animals and humans, have been traditionally analyzed by immunoassays, gas, and LC techniques with spectrophotometric detectors. This review discusses the current techniques and challenges in commercial settings associated with the analysis of mycotoxins in unique matrices such as animal feeds, herbal products, and dietary supplements containing botanicals. Because of the advantages and growing acceptance of LC-tandem MS (MS/MS) over traditional approaches, discussion is mainly based on LC-MS/MS-based approaches. Considering the impact of sample preparation on accuracy of quantitative results, discussion about pros and cons of recently introduced sample preparation techniques is integrated with analytical methods. A section of the review explains the importance and availability of reference materials for mycotoxins. The present discussion provides good insight into the current challenges and developments during mycotoxin analysis of feed and botanicals and addresses the need for researchers in terms of an official MS-based method.


2019 ◽  
Vol 102 (3) ◽  
pp. 952-965 ◽  
Author(s):  
Pei Zhang ◽  
Mick Rose ◽  
Lukas Van Zwieten

Abstract Background: Although glyphosate is widely used in agriculture, information on its residue level in soils remains scarce partly because of the difficulty in its analysis. Objective: Develop and validate a method to directly analyze glyphosate and its metabolite aminomethylphosphonic acid (AMPA) in soil. Method: Soils were extracted with 0.6 M KOH solution, and coextracted interferences were removed using a mixed-mode Bond Elut Plexa PAX®. The extracts were analyzed by LC-tandem MS fitted with a Hypercarb column and isotope-labeled (13C,15N) glyphosate and AMPA were used as internal standards. Results: LOQs were 0.05 mg/kg for both glyphosate and AMPA in soils. Correlation coefficients were ≥0.99, residuals were below 20%, and calibrations were linear in the range 0.02–1.0 μg/mL. The method was validated on five contrasting soils (Vertosol, Calcarosol, Chromosol, Sodosol, and Tenosol) commonly used for grain production in Australia. The recoveries for glyphosate and AMPA in the soils were 96–121 and 91–118%, respectively, with RSD in the range of 3–16%. Conclusions: This paper presents using the validated method in analysis glyphosate and AMPA in soils collected from crop production paddocks in Australia. The survey data showed that glyphosate and AMPA were detected in all collected soils, with concentrations ranging between 0.05 and 1.2 mg/kg. Highlights: The study demonstrates that the mixed-mode solid-phase extraction is effective in removing interferences and validates the use of Hypercarb as an alternative stationary phase for glyphosate and AMPA analysis from soils.


2018 ◽  
Vol 101 (3) ◽  
pp. 897-903 ◽  
Author(s):  
Brian T Veach ◽  
Renea Anglin ◽  
Thilak K Mudalige ◽  
Paula J Barnes

Abstract This paper describes a rapid and robust method utilizing a single liquid–liquid extraction for the quantitation and confirmation of chloramphenicol, florfenicol, and nitrofuran metabolites in honey. This methodology combines two previous extraction methods into a single extraction procedure and utilizes matrix-matched calibration standards and stable isotopically labeled standards to improve quantitation. The combined extraction procedure reduces the average extraction time by >50% when compared with previously used procedures. The drug residues were determined using two separate LC-tandem MS conditions. Validation of all the analytes was performed, with average quantitation ranging from 92 to 105% for all analytes and the RSDs for all analytes being ≤12%.


Sign in / Sign up

Export Citation Format

Share Document