scholarly journals Estimation of a Minimum Allowable Structural Strength based on Uncertainty in Material Test Data

Author(s):  
Jeffrey T. Fong ◽  
N. Alan Heckert ◽  
James J. Filliben ◽  
Pedro V. Marcal ◽  
Stephen W. Freiman

Three types of uncertainties exist in the estimation of the minimum fracture strength of a full-scale component or structure size. The first, to be called the “model selection uncertainty,” is in selecting a statistical distribution that best fits the laboratory test data. The second, to be called the “laboratory-scale strength uncertainty,” is in estimating model parameters of a specific distribution from which the minimum failure strength of a material at a certain confidence level is estimated using the laboratory test data. To extrapolate the laboratory-scale strength prediction to that of a full-scale component, a third uncertainty exists that can be called the “full-scale strength uncertainty.” In this paper, we develop a three-step approach to estimating the minimum strength of a full-scale component using two metrics: One metric is based on six goodness-of-fit and parameter-estimation-method criteria, and the second metric is based on the uncertainty quantification of the so-called A-basis design allowable (99 % coverage at 95 % level of confidence) of the full-scale component. The three steps of our approach are: (1) Find the “best” model for the sample data from a list of five candidates, namely, normal, two-parameter Weibull, three-parameter Weibull, two-parameter lognormal, and three-parameter lognormal. (2) For each model, estimate (2a) the parameters of that model with uncertainty using the sample data, and (2b) the minimum strength at the laboratory scale at 95 % level of confidence. (3) Introduce the concept of “coverage” and estimate the full-scale allowable minimum strength of the component at 95 % level of confidence for two types of coverages commonly used in the aerospace industry, namely, 99 % (A-basis for critical parts) and 90 % (B-basis for less critical parts). This uncertainty-based approach is novel in all three steps: In step-1 we use a composite goodness-of-fit metric to rank and select the “best” distribution, in step-2 we introduce uncertainty quantification in estimating the parameters of each distribution, and in step-3 we introduce the concept of an uncertainty metric based on the estimates of the upper and lower tolerance limits of the so-called A-basis design allowable minimum strength. To illustrate the applicability of this uncertainty-based approach to a diverse group of data, we present results of our analysis for six sets of laboratory failure strength data from four engineering materials. A discussion of the significance and limitations of this approach and some concluding remarks are included.

2017 ◽  
pp. 527-533
Author(s):  
Paul Jensen ◽  
Steve Davis

The term ‘Direct Clear Juice’ (DCJ) refers to the production of clear juice (CJ) within a modified sugarcane diffuser, thus negating the need for further juice purification in a settling clarifier. The feasibility of producing CJ by filtering treated diffuser juice through a shredded cane bed was demonstrated on a laboratory scale at the Sugar Milling Research Institute NPC (SMRI) and reported at the 2013 ISSCT congress. Factory trials were subsequently conducted at Tongaat Hulett’s Maidstone factory where the promising laboratory results were replicated in a full-scale diffuser. The production of DCJ requires consideration of the juice flow path in the diffuser, the method of lime and flocculant addition, and the screening of the juice after the diffuser. This paper summarises the results and learnings from the DCJ trials between 2011 and 2015. The development of the DCJ technology has been a collaborative project between the SMRI and Tongaat Hulett Sugar.


1994 ◽  
Vol 29 (7) ◽  
pp. 91-100 ◽  
Author(s):  
K. C. Lindrea ◽  
S. P. Pigdon ◽  
B. Boyd ◽  
G. A. Lockwood

During commissioning and process stabilization of a NDBEPR plant at Bendigo intracellular distribution and movement of phosphorus, K+, Mg2+ and Ca2+ was followed to establish the nature of biomass development. The system was also monitored at the end of a period of breakdown of the BEPR process and during its return to phosphorus removal. Phosphorus (P) and Mg2+ distribution in the biomass were closely related during all phases of plant operation, and laboratory trials indicated that the poor performance of the full-scale plant was associated with seasonal reduction in influent Mg2+. Laboratory scale trials produced a similar effect when the influent Mg2+ was limited to concentrations much lower than those experienced in the full scale plant, but only after the Mg2+ and P reserves in the biomass were depleted. The distribution of P, K+, Mg2+ and Ca2+ in the biomass from the full scale plant was similar to that seen in the laboratory trials when cations in the feed were severely limited and recovery of the full scale plant also closely matched that of the laboratory scale system.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Fin O’Flaherty ◽  
Fathi Al-Shawi

AbstractThis study presents a detailed analysis of the lateral forces generated as a result of vertically applied loads to recycled plastic drainage kerbs. These kerbs are a relatively new addition to road infrastructure projects. When concrete is used to form road drainage kerbs, its deformation is minimum when stressed under heavy axle loads. Although recycled plastic kerbs are more environmentally friendly as a construction product, they are less stiff than concrete and tend to deform more under loading leading to a bursting type, lateral force being applied to the haunch materials, the magnitude of which is unknown. A method is proposed for establishing the distribution of these lateral forces resulting from deformation under laboratory test conditions. A load of 400 kN is applied onto a total of six typical kerbs in the laboratory in accordance with the test standard. The drainage kerbs are surrounded with 150 mm of concrete to the front and rear haunch and underneath as is normal during installation. The lateral forces exerted on the concrete surround as a result of deformation of the plastic kerbs are determined via a strain measuring device. Analysis of the test data allows the magnitude of the lateral forces to the surrounding media to be determined and, thereby, ensuring the haunch materials are not over-stressed as a result. The proposed test methodology and subsequent analysis allows for an important laboratory-based assessment of any typical recycled plastic drainage kerbs to be conducted to ensure they are fit-for-purpose in the field.


2014 ◽  
Vol 61 ◽  
pp. 141-151 ◽  
Author(s):  
Sarah-Jane Haig ◽  
Christopher Quince ◽  
Robert L. Davies ◽  
Caetano C. Dorea ◽  
Gavin Collins

Author(s):  
Charles Lefevre ◽  
Yiannis Constantinides ◽  
Jang Whan Kim ◽  
Mike Henneke ◽  
Robert Gordon ◽  
...  

Vortex-Induced Motion (VIM), which occurs as a consequence of exposure to strong current such as Loop Current eddies in the Gulf of Mexico, is one of the critical factors in the design of the mooring and riser systems for deepwater offshore structures such as Spars and multi-column Deep Draft Floaters (DDFs). The VIM response can have a significant impact on the fatigue life of mooring and riser components. In particular, Steel Catenary Risers (SCRs) suspended from the floater can be sensitive to VIM-induced fatigue at their mudline touchdown points. Industry currently relies on scaled model testing to determine VIM for design. However, scaled model tests are limited in their ability to represent VIM for the full scale structure since they are generally not able to represent the full scale Reynolds number and also cannot fully represent waves effects, nonlinear mooring system behavior or sheared and unsteady currents. The use of Computational Fluid Dynamics (CFD) to simulate VIM can more realistically represent the full scale Reynolds number, waves effects, mooring system, and ocean currents than scaled physical model tests. This paper describes a set of VIM CFD simulations for a Spar hard tank with appurtenances and their comparison against a high quality scaled model test. The test data showed considerable sensitivity to heading angle relative to the incident flow as well as to reduced velocity. The simulated VIM-induced sway motion was compared against the model test data for different reduced velocities (Vm) and Spar headings. Agreement between CFD and model test VIM-induced sway motion was within 9% over the full range of Vm and headings. Use of the Improved Delayed Detached Eddy Simulation (IDDES, Shur et al 2008) turbulence model gives the best agreement with the model test measurements. Guidelines are provided for meshing and time step/solver setting selection.


Sign in / Sign up

Export Citation Format

Share Document