scholarly journals Combinatorial Coverage Difference Measurement

Author(s):  
D. Richard Kuhn ◽  
M. S. Raunak ◽  
Raghu N. Kacker
2020 ◽  
pp. 1-13
Author(s):  
Yuanyuan Gao ◽  
Yu Hua ◽  
Yu Xiang ◽  
Changjiang Huang ◽  
Shanhe Wang ◽  
...  

Abstract The positioning technique employing the ubiquitous signals of opportunity of non-cooperative satellites does not send special navigation signals, instead it passively receives satellite signals as noise, presenting advantages of concealment and difficulty for potential attackers. Thus, this study investigates the ranging principle and model using non-cooperative communication satellites and a time difference estimation algorithm. The technology of time difference measurement under non-cooperative observation mode was determined and simulated. A test platform for time difference measurement was built to receive the signal from an unknown geostationary Earth orbit communication satellite and verify the ranging feasibility and performance. The ranging accuracy was found to be smaller than 6 m, as demonstrated by experimental data, which shows the viability of the proposed positioning technique for ranging technology.


2006 ◽  
Author(s):  
Yuming Fan ◽  
Shuzhong Zhao ◽  
Junfeng Ren ◽  
Guoxiong Zhang

2019 ◽  
Vol 19 (2) ◽  
pp. 48-52
Author(s):  
Nan Chen ◽  
Shangchun Fan ◽  
Dezhi Zheng

Abstract According to the characteristics of stable single-phase flow, a phase difference measurement method based on the extended Kalman filter is proposed in this paper for use with Coriolis mass flowmeters. Firstly, the Mallat algorithm is applied to filter out interference signals. Then, the frequency and phase difference of the two reconstructed signals are detected through the extended Kalman filter. Compared with the sliding Goertzel algorithm or discrete time Fourier transform, the proposed method does not need to predict the signal frequency and avoids quadratic error. Simulations and experiments show that the proposed method has stronger anti-interference, higher measurement accuracy and lower relative error than the existing method based on the Hilbert transformation.


2016 ◽  
Vol 140 ◽  
pp. 77-84 ◽  
Author(s):  
Jing Zhang ◽  
Zhifang Wu ◽  
Tianye Huang ◽  
Xuguang Shao ◽  
Ping Shum

Sign in / Sign up

Export Citation Format

Share Document