coriolis flowmeter
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 19)

H-INDEX

8
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8105
Author(s):  
Evgeniia Shavrina ◽  
Vinh-Tan Nguyen ◽  
Zeng Yan ◽  
Boo Cheong Khoo

Numerical simulation is a widely used tool for Coriolis flowmeter (CFM) operation analysis. However, there is a lack of experimentally validated methodologies for the CFM simulation. Moreover, there is no consensus on suitable turbulence models and configuration simplifications. The present study intends to address these questions in a framework of a fluid-solid interaction simulation methodology by coupling the finite volume method and finite element method for fluid and solid domains, respectively. The Reynolds stresses (RSM) and eddy viscosity-based turbulence models are explored and compared for CFM simulations. The effects of different configuration simplifications are investigated. It is demonstrated that the RSM model is favorable for the CFM operation simulations. It is also shown that the configuration simplifications should not include the braces neglect or the equivalent flowmeter tube length assumption. The simulation results are validated by earlier experimental data, showing a less than 5% discrepancy. The proposed methodology will increase the confidence in CFM operation simulations and consequently provide the foundation for further studies of flowmeter usage in various fields.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012045
Author(s):  
A Egea ◽  
A García ◽  
R Herrero-Martín ◽  
J Pérez-García

Abstract Preliminary results of energy charging/discharging processes in a latent thermal energy storage system are reported. A novel design of a rotative scrapper heat exchanger has been studied. Paraffin RT44HC is employed as a phase change material. A Coriolis flowmeter is employed for measuring the mass flow through the prototype, and PT100 temperature sensors are used for measuring the inlet and exit temperature of the heat transfer fluid.


2021 ◽  
pp. 52-55
Author(s):  
E. A. Chernyavsky ◽  
Yu. V. Bunin ◽  
V. V. Negoduyko ◽  
R. M. Mikhailusov ◽  
E. M. Khoroshun ◽  
...  

Summary: The aim of the study was to determine the dependence of the volume of air discharge from the pleural cavity on the choice of surgical treatment in patients with penetrating chest injuries. Materials and methods. Of the 39 observations, video-assisted thoracoscopy (VATS) was performed in 24 patients due to existing hemothorax. Results and their discussion. Among patients with penetrating chest injuries and early complications in the form of isolated pneumothorax on the first day, VATS was performed in three cases, due to increased air discharge from the pleural cavity. On the second and third day, 3 and 1 patient needed PBX, respectively. The article presents the experience of using a Coriolis flowmeter to objectify the diagnosis of lung injuries in victims with gunshot wounds penetrating the chest. Depending on the speed and volume of air discharge from the pleural cavity, the dynamics can be determined by the tactics of treatment. Conclusions: 1. Observation in the dynamics of the rate (


2021 ◽  
Author(s):  
Harpreet Kaur Dalgit Singh ◽  
Ho Ching Shearn ◽  
Bao Ta Quoc ◽  
Dien Nguyen Van

Abstract When drilling from a deepwater semisubmersible rig, the operator encountered wells problems, including lost circulation, influxes, and ballooning, in the 14 3/4-in. hole section. Managed Pressure Drilling (MPD) equipment that helped to mitigate these issues specifically, when stripping in the hole with the bottom hole assembly through the Rotating Control Device (RCD) bearing assembly while managing surge and swab pressures, monitoring the well while displacing heavy mud into the open hole, conditioning the contaminated mud, removing gas from the well, and fingerprinting the flow back to verify ballooning against influxes, and finally stripping out of the hole. The operator experienced a total loss of circulation at the 16-in. liner shoe at 1,633m while drilling the 14 3/4-in. hole section. Several lost-circulation material (LCM) pills of different weights were pumped to cure the losses without success. Then the well was flow-checked, the gain was noted, and the well shut-in. Having the MPD chokes and the Coriolis flowmeter in place made it possible to adjust the surface back pressure (SBP) accordingly within a small operating window. As a result, the operator could achieve the key objectives of stripping the drillstring in the hole, stripping out of the hole, and rolling over to spot 1.88SG heavy mud on the bottom using the pump and pull method. After LCM was pumped and a hesitation squeeze performed, well operations were stabilized, and the casing was run to a 2,111m measured depth. Advanced flow monitoring enabled the MPD to determine the required SBP for balancing the well. MPD applied 60psi of SBP and noted a gain of 8.3bbl/hr from the flowmeter. Next, MPD applied 65psi SBP and the well was static. Then, MPD applied 70psi SBP, and the well took losses at a rate of 19bbl/hr. MPD allowed to successfully strip the BHA in the hole through the RCD bearing assembly to the shoe. Correct string displacement observed via the MPD Virtual Trip Tank, achieved by adjusting the SBP from 62psi to 125psi. The closed-loop circulating system enabled safely circulating and conditioning contaminated gas-cut mud in the hole back to homogeneous mud. MPD reduced SBP incrementally and fingerprinted flow back at every step to give assurance that well ballooning, and not influxes, caused the flow back. Dynamically adjusting SBP, coupled with advanced monitoring of the returns flow using the Coriolis flowmeter, enabled balancing the well despite the challenges of a mixed mud gradient in the annulus and a narrow operational window. The MPD riser consisted of an RCD below-tension-ring (BTR)-s, flow spool, and top and bottom crossovers. Rig modifications involved fabricating the fixed piping to allow integrating MPD equipment with the rig system.


2020 ◽  
pp. 134-144
Author(s):  
V. A Romanov ◽  
P. A Taranenko

The quantitative estimates of the flow rate (or density) of the flowing fluid obtained by the measurements using the industrial Coriolis flowmeters are made by using the laboratory experiments previously performed with the exemplary sensor. In this case we face two limitations, such as the unavailability of the facilities because of intense laboratory schedules and little time to upgrade the sensor oscillatory system. So we suggest using the virtual prototyping approaches as an alternative to the descriptive approaches. One of the fundamental problems of creating a virtual prototype of the Coriolis flowmeter is to separate the main parameter measured by the flowmeter (the phase shift) into the parts connected to the gyroscopic and dissipative forces. To solve this problem, we need to identify the dissipative forces model of the flowmeter oscillatory system. The article discusses the experimental results determining the dissipative properties of the mechanical oscillatory system of one of the commercially available Coriolis flowmeter samples. The algorithm identifying the model of the dissipative properties of the flowmeter oscillatory system is based on studying the nonlinearity degree of the envelope of the vibrogram of free damped oscillations. The experiments were carried out at the pouring stand of the Center for Experimental Mechanics of the South Ural State University, which allows controlling the speed and phase composition of the fluid flowing through the flowmeter. The article describes the processing algorithms for vibrograms of the damped oscillations, which make it possible to isolate the contribution into the dissipated energy from the dry (Coulomb model), the linear viscous (Rayleigh model) and quadratic viscous friction. The pronounced dependence of the vibrational system dissipation of the Coriolis flowmeter on the features of the fluid flow (velocity, mode: continuous, slug) was experimentally proven, the solutions of identifying the model of the dissipative forces are presented. The identification algorithm for the model of the dissipative properties of the flowmeter oscillatory system is based on studying the nonlinearity degree of the envelope of the vibrogram of the free damped oscillations. The use of the pouring stand made it possible to control the speed and phase composition of the fluid flowing through the flowmeter. The article describes the processing algorithms for the vibrograms of the damped oscillations by isolating the contribution into the dissipated energy from the dry (Coulomb model), linear viscous (Rayleigh model) and quadratic viscous friction. The pronounced dependence of the dissipation of the vibrational system of the Coriolis flowmeter on the features of the fluid flow (velocity, mode: continuous, slug) was experimentally proved, and the results of identifying the model of the dissipative forces are presented. The experiments included water acts as a fluid medium and air acts as a dispersed phase.


Sign in / Sign up

Export Citation Format

Share Document