scholarly journals Experimental Evaluation of Mesoscale Crack Propagation Behavior in CF/EP Cross-Ply Laminates by Digital Image Correlation Based on Fiber Cross Section

2018 ◽  
Vol 44 (6) ◽  
pp. 234-241
Author(s):  
Yusei SATO ◽  
Yoshiki NISHIDA ◽  
Ryotaro KIMURA ◽  
Kohei SHIMURA ◽  
Hiroshi SAITO ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4700
Author(s):  
Shaoqiang Meng ◽  
Jiaming Li ◽  
Zhihao Liu ◽  
Wenwei Wang ◽  
Yanfei Niu ◽  
...  

By optimizing the distribution of steel fibers in fiber-reinforced cementitious mortar (FRCM) through the layered structure, the role of fibers can be fully utilized, thus improving the flexural behavior. In this study, the flexural behavior of layered FRCM at different thicknesses (25 mm, 50 mm, 75 mm, 100 mm) of the steel fiber layer was investigated. The evolution of the crack propagation behavior was analyzed using the digital image correlation (DIC) technique. The results showed that the steel fiber layer thickness of 75 mm has the best flexural behavior. Moreover, the crack propagation path is more tortuous. The maximum value of crack opening displacement (COM) increases with the increase in fiber thickness. In addition, increasing the bottom layer thickness can increase the height of the tensile zone, but the interface inhibits the increase of the tensile zone.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6149-6164
Author(s):  
Alan Dickson ◽  
Bernard Dawson

An approach combining maps of wood morphology and digital image correlation was developed to investigate the drying of Eucalyptus nitens wood. Maps of morphological features (vessel and ray distribution) and cell cross-section dimensions were acquired by confocal laser scanning microscopy. Shrinkage maps were generated using digital image correlation. There were statistically significant correlations between shrinkage/collapse and wood morphology at two levels. Firstly, there were positional relationships, with for example, both radial and tangential shrinkage increasing with increasing distance from vessel elements. Secondly, there were dimensional relationships, such as, cells with large perimeters (relative to their wall thickness) on average showing greater shrinkage. Generally, the positional relationships dominated the dimensional relationships. Detailed analysis over large areas allows for a fuller analysis of the interrelationship between wood morphology and drying shrinkage and collapse.


2019 ◽  
Vol 138 ◽  
pp. 103158 ◽  
Author(s):  
Mincong Liu ◽  
Jingyi Guo ◽  
Zhilong Li ◽  
Chung-Yuen Hui ◽  
Alan T. Zehnder

Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 504
Author(s):  
Jie Zhang ◽  
Cedric Kiekens ◽  
Stijn Hertelé ◽  
Wim De Waele

The trajectory of fatigue crack growth is influenced by many parameters and can be irregular due to changes in stress distribution or in material properties as the crack progresses. Images of the surface of a standardized test specimen can be used to visualize the crack trajectory in a non-destructive way. Accurately identifying the location of the crack tip, however, is challenging and requires devoted image postprocessing. In this respect, digital image correlation allows to obtain full field displacement and strain fields by analysing changes of digital images of the same sample at different stages of loading. This information can be used for the purpose of crack tip tracking. This paper presents a combined experimental-numerical study of detection and prediction of fatigue crack propagation path by means of digital image correlation (DIC) and the extended finite element method (X-FEM). Experimental validation and analyses are carried out on a modified C(T) specimen in which a curved crack trajectory is triggered by introducing mixed-mode (tension + shear) loading. The developed tools are used for validating an automated framework for crack propagation prediction.


Sign in / Sign up

Export Citation Format

Share Document