scholarly journals Design of a multi-band antenna for a mobile communication terminal with reconfiguration characteristic

Author(s):  
Dae-Soo Im ◽  
Ki-Rae Kim ◽  
Joong-Han Yoon
2013 ◽  
Vol 411-414 ◽  
pp. 809-812
Author(s):  
Sheng Cai Jiao ◽  
Wen Zhou Sun

In this paper, we present a compact high-efficiency multi-band micro strip antenna for the mobile devices. At the same time, because most of antennas are located near the ground planar, the proposed antenna is designed with a ground planar. The antenna occupies a small size of 100*60mm2 and operates in CDMA(824-894MHz),GSM(880-960MHz), DCS(1710-1880),PCS(1850-1990),UMTS(1920-2170) and 3G band. By using a long slot, two trapezoid slots and a short slot, a triple resonance around 900MHz and another wideband resonance around 2100MHz can be created, respectively. Details of the antenna design are described , and its radiation performances results are presented and discussed. Keywords-Multi-band antenna;; mobile communication devices; hige-efficency


2021 ◽  
Vol 36 (1) ◽  
pp. 67-74
Author(s):  
Peng Chen ◽  
Lihua Wang ◽  
Zhonghua Ma

A frequency reconfigurable planar monopole antenna for fifth-generation (5G) mobile communication terminal equipment is presented. The proposed antenna uses a meandered monopole, branch resonance and other techniques to make the antenna resonant in multiple frequency bands. The antenna is compact in size (115 mm × 55 mm × 0.8 mm) and has a longitudinal length less than one-tenth of the resonant wavelength (working at 1.79 GHz). The pin diode is designed between the planar meandered monopole antenna and branch. The current path of the high-frequency current on the antenna can be easily controlled by controlling the DC bias voltage of the diode, and the operating frequency of the antenna is switched between three frequency bands. The antenna is fed directly through a 50 Ω matched transmission line. The measured data of the antenna in the anechoic chamber show good consistency with simulation data. The radiation pattern of the antenna shows good omnidirectional characteristics and good frequency characteristics, with a maximum radiation gain of 13.6 dBi. Experimental results demonstrate that the antenna can meet the design requirements of 5G communication.


Author(s):  
Mohd Tafir Mustaffa

In this research, the aim is to design and implement a new low noise amplifier (LNA) for a multi-standard mobile receiver based on reconfigurability concept. The LNA design is based on the inductively-degenerated common-source (IDCS) topology as it has been proven to be a good choice in designing multi-standard multi-band LNA. The design is using 0.18 µm CMOS technology. The reconfigurable LNA has been designed to operate in two bands of standards consisting the bands range from 800 to 1000-MHz (lower band) and 1800 to 2200-MHz (upper band). The simulation results exhibit gain S21 of 12.9-dB for lower band and 12.4-dB for upper band, input reflection S11 of -14.5-dB and -17.2-dB for both bands, and output return loss S22 of -14.7-dB and -26-dB for lower and upper band making the LNA suitable for most of the mobile communication applications. The LNA also exhibits the noise of figure of 2.55-dB and 2.3-dB for lower and upper band respectively. The circuit consumes 26.5 mW when operating in lower band mode and uses 18.8 mW of power when operating in upper band mode.


Sign in / Sign up

Export Citation Format

Share Document