scholarly journals Heat Transfer Characteristics of Spray Cooling up to Critical Heat Flux on a Low-fin Enhanced Surface

Author(s):  
Yohan Lee ◽  
Dong-Gyu Kang ◽  
Dongsoo Jung
Author(s):  
Shotaro Nishiguchi ◽  
Masahiro Shoji

Some alcohol aqueous solution such as butanol shows nonlinear surface tension dependence. Namely, contrary to ordinary liquid or solution, surface tension increases with temperature at the range of high liquid temperature. At the triple-phase point on a heated surface, the thermo-capillary force acts for the liquid to wet the heated surface, so the solutions are sometimes called as “self-rewetting liquid”. Self-rewetting liquids may prohibit the dry-out of a heated surface so that the heat transfer performance would be enhanced. For this reason, applications of self-rewetting liquids to heat transfer devices such as heat pipes are actively studied in recent years. However, the heat transfer characteristics of boiling of self-rewetting liquids are not fully understood. In the present research, a boiling experiment of butanol aqueous solution was performed on a heated wire in order to make clear the fundamental heat transfer characteristics, especially Critical Heat Flux (CHF), by changing solution concentration density and liquid temperature in a wide range. Bubbling aspects were observed by high-speed video camera with the rate of 1000 frames per second. It is found from the experiment that CHF is generally enhanced when compared to the case of pure water. CHF increases with concentration density at any temperatures. CHF generally increases with subcooling but at low subcooling region, it once decreases and then increases after taking a minimum. It is also found that peculiar boiling takes place where many tiny bubbles generate and bubbles are unlikely to coalesce. At high subcoolings, the mode of boiling similar to the so-called MEB (Micro-bubble Emission Boiling) was observed. These results of the present experiment indicate a possible application of butanol aqueous solution to high-performance-cooling-devices utilizing micro-channels because generating bubbles are small enough so that the pressure loss of the coolant may be small and the heat transfer rate is sufficiently high even at the saturated condition.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 61 ◽  
Author(s):  
Yazhu Zhang ◽  
Zhi Wen ◽  
Zengwu Zhao ◽  
Chunbao Bi ◽  
Yaxiang Guo ◽  
...  

Spray cooling is a key technology in the continuous casting process and has a marked influence on the product quality. In order to obtain the heat transfer characteristics, which are closer to the actual continuous casting to serve the design, prediction and simulation, we created an experimental laboratory setup to investigate heat transfer characteristics of air mist spray cooling during the continuous casting secondary cooling process. A 200-mm thick sample of carbon steel was heated above 1000 °C, and then cooled in a water flux range of 0.84 to 3.0 L/(m2∙s). Determination of the boundary conditions involved experimental work comprising an evaluation of the thermal history and the heat flux and heat transfer coefficient (HTC) at the casting surface using inverse heat conduction numerical schemes. The results show that the heat fluxes were characterized via boiling curves that were functions of the slab surface temperatures. The heat flux was determined to be 2.9 × 105 W/m2 in the range of 1100 to 800 °C with a water flux of 2.1 L/(m2∙s). The critical heat flux increased with the increase of water flux. The HTC was close to a linear function of water flux. We also obtained the relation between the HTC and the water flux in the transition boiling region for surface temperatures of 850 to 950 °C.


1988 ◽  
Vol 110 (3) ◽  
pp. 728-734 ◽  
Author(s):  
K.-A. Park ◽  
A. E. Bergles

Microelectronic chips were simulated with thin foil heaters supplied with d-c power and arranged in two vertical configurations: flush mounted on a circuit board substrate or protruding from the substrate about 1 mm. Heat transfer characteristics (midpoint) were obtained with varying height (1 mm to 80 mm) and width (2.5 mm to 70 mm) in R-113. Two types of incipient boiling temperature overshoot were observed with saturated boiling. The inception of boiling depended greatly on the location of the active boiling sites on the heater. For arrays, the inception of boiling for the top heater took place at lower superheat than for the bottom heater. Heater size had no effect on established boiling, in contrast to results reported previously in the literature. The critical heat flux for wide heaters increased with decreasing heater height, as expected. The critical heat flux also increased with decreasing width. Correlations are presented that describe these effects.


Sign in / Sign up

Export Citation Format

Share Document