scholarly journals CFD STUDY ON THE COMBUSTION CHAMBER OF A 1 kW CLASS STIRLING ENGINE

2011 ◽  
Vol 16 (3) ◽  
pp. 88-94 ◽  
Author(s):  
J. Ahn ◽  
Y.S. Lee ◽  
H.J. Kim
2014 ◽  
Vol 23 (2) ◽  
pp. 196-201
Author(s):  
Tie Li ◽  
Xiange Song ◽  
Xiaohong Gui ◽  
Dawei Tang ◽  
Zhigang Li ◽  
...  

2018 ◽  
Vol 67 ◽  
pp. 02028
Author(s):  
Ardiyansyah Yatim ◽  
Ade Luthfi ◽  
Raden Chemilo

The Stirling engine is an external combustion where the fuel combustion process takes place outside the cylinder, at the combustion chamber or burner. Stirling engine offers flexibility of fuel used for the power generation hence is a potential substitute to fossil fuelled internal combustion engine and contribute toward more sustainable power generation. In this study a burner for Gamma V2-6 Stirling engine is designed and developed for a biogas-fuelled power generation system. The heat used to power the Stirling engine is obtained from combustion of biogas at the burner. The system has 5 kW capacity fuelled by 165 kg/day solid waste (biowaste) from local farm. The bio-digester needed is 20 m3. The combustion temperature of the burner is in the range of 600 to 1000°C. The required fuel input is 60,000BTU/hr or equivalent to 17 kW. The system requires constant heat from the combustion chamber hence a specific burner is designed to fulfil the purpose and accommodate biogas composition and optimum heat transfer to the engine. The burner is able to provide for simultaneous air preheater for lower fuel consumption leading to 37% lower fuel consumption.


2021 ◽  
Vol 313 ◽  
pp. 11002
Author(s):  
Liu Kun ◽  
Lu Tian ◽  
Lan Jian ◽  
Huang Xiaoyu ◽  
Yin Guofeng

To investigate the ignition characteristics of an axial-flow injection burner for a Stirling engine, a combustion chamber was designed. Diesel was used as fuel and oxygen as oxidant. The experiments of ignition characteristics were carried out with an electric plug igniter. The ignition characteristics under different combustion chamber pressure, pre-oxygen supply time, oxygen supply flow and ignition position were studied. The experimental results show that, with the increase of the pressure, the ignition time of the burner increases gradually, and the ignition success rate decreases gradually. The oxygen flow rate is related to ignition time in a certain range, while the pre-oxygen supply time has little effect. With the ignition position moving downward, the ignition time decreases gradually.


2020 ◽  
Vol 42 (4) ◽  
pp. 26-32
Author(s):  
I.I. Borisov ◽  
A.A. Khalatov

A typical scheme of a biomass fueled micro-CHP unit with a Stirling engine, including a combustion chamber, a Stirling Engine, a recuperator and water heater, is considered. A brief overview of the main biomass combustion methods used in this installation is made. Thermophysical analysis was carried out on the basis of solving a system of equations: the reaction equation for wood biomass combustion, the equations of both the general heat balance and the heat balance of parts of CHP unit, as well as the equation of energy conservation at flows mixing in the combustion chamber, taken into account the heat input and losses. The relationship for calculating the theoretical temperature in the combustion chamber and heat flux in the recuperatoris obtained. The last equation is obtained in dimensionless form. The theoretical temperature in the combustion chamber and the heat flux in the recuperator have been calculated, the influence of the main factors has been analyzed - the efficiency of heat exchange in the recuperator, the share of the total air flow passing through the recuperator, the excess air ratio, dimensionless heat losses and heat flux on the hot heat exchanger of the Stirling engine. It is shown that the temperature in the combustion chamber decreases with a decrease in the efficiency of the recuperator and with an increase in the excess air ratio. A significant influence of heat losses in the combustion chamber on the heat flux in therecuperatorwas found. Under certain conditions (high heat losses and high heat exchange on the hot heat exchanger of the Stirling engine), the recuperator is not neededatall. It is also shown that the share of the total air flow passing through the recuperator has a significant effect on the heat flux in the recuperator. Thus, when the air flow passing through the recuperator is reduced by 2 times, the heat flow is reduced by 5 times. Therefore, it is necessary to minimize the air flow bypassing the recuperator. As a result of thermophysical analysis, the optimal value of the excess air ratio was obtained, which is 1.7 ... 1.8.


2017 ◽  
Vol 17 ◽  
pp. 245-252
Author(s):  
V. V. Somov

In carrying out an investigation into the explosion, among others, the investigative version of the use of a single-use reactive grenade launcher is being considered. The most common for criminal explosions are applied grenade launchers RPG-18, RPG-22, RPG-26. Their use is due to a number of such properties as small size and weight, which makes it possible to transfer them covertly, the range of the shot significantly exceeding the range of the hand grenade throw, the high detonating effect of the rocket grenade explosion. The single-use rocket launchers are generally of the same design. Their differences are in the features of the components construction and dimensional characteristics, which are given in the article. On the basis of expert practice, details ofgrenade launchers that remain at the site of the explosion and have the least damage are determined. These details are the objects of investigation of the explosion technical expertise. These objects include launchers of grenade launchers and rocket parts ofjet grenades. The design features of the launchers, their dimensional characteristics and marking symbols make it possible to determine their belonging to a specific type of jet grenade launchers. Missile parts of jet grenades differ in the form of the combustion chamber of the jet engine, nozzle, in the size ofthe outlet section of the nozzle, in the form and size of the stabilizerfeathers. To determine the belonging of the rocket part of the grenade to a specific type ofjet grenade launcher, it’s necessary to establish a set of structural features and dimensional characteristics. At considerable damage of the combustion chamber of the jet engine, as a rule, the nozzle block remains intact that allows to define diameter of critical section of a nozzle, and on it to establish type of the used single-use grenade launcher.


Author(s):  
Serhii Kovalov

The expediency of using vehicles of liquefied petroleum gas as a motor fuel, as com-pared with traditional liquid motor fuels, in particular with diesel fuel, is shown. The advantages of converting diesel engines into gas ICEs with forced ignition with respect to conversion into gas diesel engines are substantiated. The analysis of methods for reducing the compression ratio in diesel engines when converting them into gas ICEs with forced ignition has been carried out. It is shown that for converting diesel engines into gas ICEs with forced ignition, it is advisable to use the Otto thermo-dynamic cycle with a decrease in the geometric degree of compression. The choice is grounded and an open combustion chamber in the form of an inverted axisymmetric “truncated cone” is developed. The proposed shape of the combustion chamber of a gas internal combustion engine for operation in the LPG reduces the geometric compression ratio of D-120 and D-144 diesel engines with an unseparated spherical combustion chamber, which reduces the geometric compression ratio from ε = 16,5 to ε = 9,4. The developed form of the combustion chamber allows the new diesel pistons or diesel pistons which are in operation to be in operation to be refined, instead of making special new gas pistons and to reduce the geometric compression ratio of diesel engines only by increasing the combustion chamber volume in the piston. This method of reducing the geometric degree of compression using conventional lathes is the most technologically advanced and cheap, as well as the least time consuming. Keywords: self-propelled chassis SSh-2540, wheeled tractors, diesel engines D-120 and D-144, gas engine with forced ignition, liquefied petroleum gas (LPG), compression ratio of the internal com-bustion engine, vehicles operating in the LPG.


Sign in / Sign up

Export Citation Format

Share Document