DETERMINATION OF THE TYPE OF A SINGLE-USE GRENADE LAUNCHER BASED ON ITS COMPOSITE PARTS AND FRAGMENTS OF REACTIVE GRENADE FOUND AT THE PLACE OF ACCIDENT

2017 ◽  
Vol 17 ◽  
pp. 245-252
Author(s):  
V. V. Somov

In carrying out an investigation into the explosion, among others, the investigative version of the use of a single-use reactive grenade launcher is being considered. The most common for criminal explosions are applied grenade launchers RPG-18, RPG-22, RPG-26. Their use is due to a number of such properties as small size and weight, which makes it possible to transfer them covertly, the range of the shot significantly exceeding the range of the hand grenade throw, the high detonating effect of the rocket grenade explosion. The single-use rocket launchers are generally of the same design. Their differences are in the features of the components construction and dimensional characteristics, which are given in the article. On the basis of expert practice, details ofgrenade launchers that remain at the site of the explosion and have the least damage are determined. These details are the objects of investigation of the explosion technical expertise. These objects include launchers of grenade launchers and rocket parts ofjet grenades. The design features of the launchers, their dimensional characteristics and marking symbols make it possible to determine their belonging to a specific type of jet grenade launchers. Missile parts of jet grenades differ in the form of the combustion chamber of the jet engine, nozzle, in the size ofthe outlet section of the nozzle, in the form and size of the stabilizerfeathers. To determine the belonging of the rocket part of the grenade to a specific type ofjet grenade launcher, it’s necessary to establish a set of structural features and dimensional characteristics. At considerable damage of the combustion chamber of the jet engine, as a rule, the nozzle block remains intact that allows to define diameter of critical section of a nozzle, and on it to establish type of the used single-use grenade launcher.

2013 ◽  
Vol 11 (11) ◽  
pp. 1860-1873 ◽  
Author(s):  
Magdalena Nowacka ◽  
Łukasz Klapiszewski ◽  
Małgorzata Norman ◽  
Teofil Jesionowski

AbstractAdvanced silica/lignin hybrid biomaterials were obtained using hydrated or fumed silicas (Aerosil®200) and Kraft lignin as precursors, which is a cheap and biodegradable natural polymer. To extend the possible range of applications, the silicas were first modified with N-2-(aminoethyl)-3-aminopropyltrimethoxsysilane, and then with Kraft lignin, which had been oxidized with sodium periodate. The SiO2/lignin hybrids and precursors were characterised by means of determination of their physicochemical and dispersive-morphological properties. The effectiveness of silica binding to lignin was verified by FT-IR spectroscopy. The zeta potential value provides relevant information regarding interactions between colloid particles. Measurement of the zeta potential values enabled an indirect assessment of stability for the studied hybrid systems. Determination of zeta potential and density of surface charge also permitted the quantitative analysis of changes in surface charge, and indirectly confirmed the effectiveness of the proposed method for synthesis of SiO2/lignin hybrid materials. A particularly attractive feature for practical use is their stability, especially electrokinetic stability. It is expected that silica/lignin hybrids will find a wide range of applications (polymer fillers, biosorbents, electrochemical sensors), as they combine the unique properties of silica with the specific structural features of lignin. This makes these hybrids biomaterials advanced and multifunctional.


2012 ◽  
Vol 134 (10) ◽  
pp. 4569-4572 ◽  
Author(s):  
Manabu Hoshino ◽  
Hidehiro Uekusa ◽  
Ayana Tomita ◽  
Shin-ya Koshihara ◽  
Tokushi Sato ◽  
...  

Author(s):  
Irene Puncello ◽  
Silvia Caprili ◽  
Elisa Bonanni

AbstractThe present paper deals with the elaboration of a methodology to assess the macro-seismic risk of monumental historical buildings, representing a fundamental part of the European cultural assets. Monumental buildings typically arise from a very complex constructive and morphological evolution process characterised by modifications occurred over the centuries. Therefore, they are usually heterogeneous buildings similar to 'structural aggregates' rather than single constructions and characterised by a structural behaviour depending on the mutual interaction of different structural units. An accurate knowledge process can allow the determination of structural units within the complex: such units can be therefore analysed using a specific evaluation form conceived to provide a 'risk ranking' of the different portions constituting the aggregate and accounting for vulnerability, exposure and seismic hazard parameters. The proposed methodology exploits what is already used to quickly determine structural features and eventual damages in the post-earthquake phase for ordinary buildings, introducing specific aspects typical of historical-cultural heritage requiring attention. According to the results achieved, retrofit interventions or deepen investigations can be planned for units provided by a higher position in the risk scale, optimising and rationally planning the use of available economic and time resources. In the present work, the proposed methodology is applied to the monumental complex of the Certosa di Calci, Pisa (Italy).


2021 ◽  
Vol 2103 (1) ◽  
pp. 012124
Author(s):  
A Y Shmykov ◽  
S V Mjakin ◽  
N A Bubis ◽  
L M Kuztetzov ◽  
N A Esikova ◽  
...  

Abstract Oligomeric diisocyanate based coatings with different contents of barium titanate (BaTiO3) submicron sized particles as a ferroelectric filler are synthesized on poly(dimethylsiloxane) (PDMS) supports. The study of thus obtained coatings using confocal scanning electron microscopy allowed the characterization of their morphology and features of BaTiO3 particles distribution in the polymer binder, including the determination of threshold filler contents corresponding to the formation of an infinite cluster, matrix-island and chain-like structures as well as the percolation. Dielectric permittivity and dielectric losses of the composites are measured and studied depending on BaTiO3 filler content and relating structural features.


2021 ◽  
Vol 67 (3) ◽  
pp. 251-258
Author(s):  
A.E. Kniga ◽  
I.V. Polyakov ◽  
A.V. Nemukhin

Effective personalized immunotherapies of the future will need to capture not only the peculiarities of the patient’s tumor but also of his immune response to it. In this study, using results of in vitro high-throughput specificity assays, and combining comparative models of pMHCs and TCRs using molecular docking, we have constructed all-atom models for the putative complexes of all their possible pairwise TCR-pMHC combinations. For the models obtained we have calculated a dataset of physics-based scores and have trained binary classifiers that perform better compared to their solely sequence-based counterparts. These structure-based classifiers pinpoint the most prominent energetic terms and structural features characterizing the type of protein-protein interactions that underlies the immune recognition of tumors by T cells.


1967 ◽  
Vol 40 (2) ◽  
pp. 385-399 ◽  
Author(s):  
Raymond C. Ferguson

Abstract High resolution NMR spectroscopy is proving to be a useful experimental technique for determining the microstructures of high polymers. Its major utility, aside from identifying structural features often not detectable by other methods, lies in quantitative applications. Some examples are the determination of monomer ratios in copolymers, polymer tacticity, sequence isomerism of monomer units, and other types of structural isomerism. The applicability of the method is being enhanced by continuing development of high-field spectrometers, special accessories, and new experimental techniques, and by application of computers to the analysis of spectral data.


Sign in / Sign up

Export Citation Format

Share Document