ANALYSIS OF TWO-DIMENSIONAL VISCOUS FLOWS AROUND AN OSCILLATING CYLINDER USING EULERIAN GRID-LESS METHOD

2021 ◽  
Vol 26 (3) ◽  
pp. 73-80
Author(s):  
S.W. Ko ◽  
S.M. Jeong
2003 ◽  
Vol 10 (1-2) ◽  
pp. 137-163
Author(s):  
Cristian A. Coclici ◽  
Jörg Heiermann ◽  
Gh. Moroşanu ◽  
W. Wendland

2003 ◽  
Vol 125 (1) ◽  
pp. 158-165 ◽  
Author(s):  
A. Ashrafizadeh ◽  
G. D. Raithby ◽  
G. D. Stubley

This paper describes a method for calculating the shape of duct that leads to a prescribed pressure distribution on the duct walls. The proposed design method is computationally inexpensive, robust, and a simple extension of existing computational fluid dynamics methods; it permits the duct shape to be directly calculated by including the coordinates that define the shape of the duct wall as dependent variables in the formulation. This “direct design method” is presented by application to two-dimensional ideal flow in ducts. The same method applies to many problems in thermofluids, including the design of boundary shapes for three-dimensional internal and external viscous flows.


Author(s):  
Jian-Jun Shu

A number of new closed-form fundamental solutions for the two-dimensional generalized unsteady Oseen and Stokes flows associated with arbitrary time-dependent translational and rotational motions have been developed. As an example of application, the hydrodynamic force acting on a circular cylinder translating in an unsteady flow field at low Reynolds numbers is calculated using the new generalized fundamental solutions.


Sign in / Sign up

Export Citation Format

Share Document