Direct Design of Ducts

2003 ◽  
Vol 125 (1) ◽  
pp. 158-165 ◽  
Author(s):  
A. Ashrafizadeh ◽  
G. D. Raithby ◽  
G. D. Stubley

This paper describes a method for calculating the shape of duct that leads to a prescribed pressure distribution on the duct walls. The proposed design method is computationally inexpensive, robust, and a simple extension of existing computational fluid dynamics methods; it permits the duct shape to be directly calculated by including the coordinates that define the shape of the duct wall as dependent variables in the formulation. This “direct design method” is presented by application to two-dimensional ideal flow in ducts. The same method applies to many problems in thermofluids, including the design of boundary shapes for three-dimensional internal and external viscous flows.

Author(s):  
Sercan Acarer ◽  
Ünver Özkol

The two-dimensional through-flow modeling of turbomachinery is still one of the most powerful tools available to the turbomachinery industry for aerodynamic design, analysis, and post-processing of test data due to its robustness and speed. Although variety of aspects of such a modeling approach are discussed in the publicly available literature for compressors and turbines, not much emphasis is placed on combined modeling of the fan and the downstream splitter of turbofan engines. The current article addresses this void by presenting a streamline curvature through-flow methodology that is suitable for inverse design for such a problem. A new split-flow method for the streamline solver, alternative to the publicly available analysis-oriented method, is implemented and initially compared with two-dimensional axisymmetric computational fluid dynamics on two representative geometries for high and low bypass ratios. The empirical models for incidence, deviation, loss, and end-wall blockage are compiled from the literature and calibrated against two test cases: experimental data of NASA two-stage fan and three-dimensional computational fluid dynamics of a custom-designed transonic fan stage. Finally, experimental validation against GE-NASA bypass fan case is accomplished to validate the complete methodology. The proposed method is a simple extension of streamline curvature method and can be applied to existing compressor methodologies with minimum numerical effort.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Luying Zhang ◽  
Gabriel Davila ◽  
Mehrdad Zangeneh

Abstract This paper presents three different multiobjective optimization strategies for a high specific speed centrifugal volute pump design. The objectives of the optimization consist of maximizing the efficiency and minimizing the cavitation while maintaining the Euler head. The first two optimization strategies use a three-dimensional (3D) inverse design method to parametrize the blade geometry. Both meridional shape and 3D blade geometry are changed during the optimization. In the first approach, design of experiment (DOE) method is used and the pump efficiency is obtained from computational fluid dynamics (CFD) simulations, while cavitation is evaluated by using minimum pressure on blade surface predicted by 3D inverse design method. The design matrix is then used to create a surrogate model where optimization is run to find the best tradeoff between cavitation and efficiency. This optimized geometry is manufactured and tested and is found to be 3.9% more efficient than the baseline with reduced cavitation at high flow. In the second approach, only the 3D inverse design method output is used to compute the efficiency and cavitation parameters and this leads to considerable reduction to the computational time. The resulting optimized geometry is found to be similar to the computationally more expensive solution based on 3D CFD results. In order to compare the inverse design based optimization to the conventional optimization, an equivalent optimization is carried out by parametrizing the blade angle and meridional shape.


2018 ◽  
Vol 42 (2) ◽  
pp. 128-135 ◽  
Author(s):  
S Horb ◽  
R Fuchs ◽  
A Immas ◽  
F Silvert ◽  
P Deglaire

NENUPHAR aims at developing the next generation of large-scale floating offshore vertical-axis wind turbine. To challenge the horizontal-axis wind turbine, the variable blade pitch control appears to be a promising solution. This article focuses on blade pitch law optimization and resulting power and thrust gain depending on the operational conditions. The aerodynamics resulting from the implementation of a variable blade pitch control are studied through numerical simulations, either with a three-dimensional vortex code or with two-dimensional Navier-stokes simulations (two-dimensional computational fluid dynamics). Results showed that the three-dimensional vortex code used as quasi-two-dimensional succeeded to give aerodynamic loads in very good agreement with two-dimensional computational fluid dynamics simulation results. The three-dimensional-vortex code was then used in three-dimensional configuration, highlighting that the variable pitch can enhance the vertical-axis wind turbine power coefficient ( Cp) by more than 15% in maximum power point tracking mode and decrease it by more than 75% in power limitation mode while keeping the thrust below its rated value.


2018 ◽  
Vol 167 ◽  
pp. 03006
Author(s):  
Xiao-er Wang ◽  
Zhen-shan Zhang ◽  
Meng Zhang

In order to balance the torque of front rotor and rear rotor of underwater vehicle, the analysis of the speed triangles at the inlet and outlet of the front and rear rotor has been done. Then, the thought of using contra-rotating pumpjet to achieve the objective was raised. The stator is installed behind the rear rotor so as to ensure the overall torque of the propulsor balance, at the same time, the stator can also support the shroud of the propulsor. the parameter design of the rotor and the stator has been carried out by using the three dimensional inverse design method. At last, the performance of the designed pumpjet propulsor is obtained when it is installed on the underwater vehicle By using computational fluid dynamics. The results show that the total torque of the propulsor is reduced to 1.8 N * m on the design point although the power difference ratio of the front rotor and the rear rotor is 20%. The torque ratio is also reduced from 4.6% to 0.4%, which is good to meet the propulsor balance requirement and verifies the 3-D design method of pumpjet is effective.


2013 ◽  
Vol 427-429 ◽  
pp. 262-265
Author(s):  
De Fan Zhou ◽  
Qi Hui Zhou ◽  
Xiu Li Meng ◽  
Xiao Dong Yu ◽  
Zhi Qiang Wang ◽  
...  

In order to solve the mechanical deformation of the hydrostatic center rest, a numerical simulation concerning pressure field of hydrostatic center rest is studied. CFX of ANSYS has been used to compute three-dimensional pressure field of gap fluid between workpiece and bearing pillow. This research analyzes the influence of rotation speed on the bearing pressure performance according to lubricating theory and computational fluid dynamics, and it has revealed its pressure distribution law of gap oil film. Results indicate that an improved characteristic will be affected by rotation speed easily, and oil cavity pressure increases by gradually with rotation speed enhancing. The reliability of a hydrostatic center rest can be predicted through this method.


Author(s):  
A Shahsavari ◽  
M Nili-Ahmadabadi

This paper presents an innovative design method for a transonic compressor based on the radial equilibrium theory by means of increasing blade loading. Firstly, the rotor blade of a transonic compressor is redesigned based on the constant spanwise de-Haller number and diffusion. The design method leads to an unconventional increased axial velocity distribution in tip section, which originates from non-uniform enthalpy distribution assumption. A code is applied to extract the compressor meridional plane and blade-to-blade geometry containing rotor and stator in order to design the blade three-dimensional view. A structured grid is generated for the numerical domain of fluid. Finer grids are used for the regions near walls to capture the boundary layer effects and behavior. Reynolds-averaged Navier–Stokes equations are solved by finite volume method for rotating zones (rotor) and stationary zones (stator). The experimental data, available for the performance map of NASA Rotor67, is used to validate the results of the current simulations. Then, the capability of the design method is validated by computational fluid dynamics that is capable of predicting the performance map. The numerical results of the new geometry by representing 11% improvement in efficiency and 19% in total pressure ratio verify the new method advantages. The computational fluid dynamics results also show that the newly designed rotor blades due to a higher velocity in the tip section have a special capacity to increase the loading without any separation. The mass flow reduction is observed in the new geometry, which could be easily improved by changing stagger angle.


2004 ◽  
Vol 126 (4) ◽  
pp. 794-802 ◽  
Author(s):  
Dong-Chun Choi ◽  
David L. Rhode

A new approach for employing a two-dimensional computational fluid dynamics (CFD) model to approximately compute a three-dimensional flow field such as that in a honeycomb labyrinth seal was developed. The advantage of this approach is that it greatly reduces the computer resource requirement needed to obtain a solution of the leakage for the three-dimensional flow through a honeycomb labyrinth. After the leakage through the stepped labyrinth seal was measured, it was used in numerically determining the value of one dimension (DTF1) of the simplified geometry two-dimensional approximate CFD model. Then the capability of the two-dimensional model approach was demonstrated by using it to compute the three-dimensional flow that had been measured at different operating conditions, and in some cases different distance to contact values. It was found that very close agreement with measurements was obtained in all cases, except for that of intermediate clearance and distance to contact for two sets of upstream and downstream pressure. The two-dimensional approach developed here offers interesting benefits relative to conventional algebraic-equation models, particularly for evaluating labyrinth geometries/operating conditions that are different from that of the data employed in developing the algebraic model.


Author(s):  
John Daly ◽  
Patrick Frawley ◽  
Ajit Thakker

This paper deals with the application of Computational Fluid Dynamics (CFD) to the analysis of the aerodynamic characteristics of symmetrical airfoil blades in 2-Dimensional cascade flow. Theoretical two dimensional cascade analyses of Wells Turbines blade profiles have been used in the past to predict the performance of three-dimensional turbines. The use of two-dimensional cascade models is beneficial as it allows the analysis and optimisation of the blade profile with approximately one tenth the computational requirements of a three-dimensional model. The primary objective of this work was to provide further validation of the use of two dimensional cascade models by comparing the computational predictions with traditional theoretical calculation results and also with three-dimensional turbine results. A secondary objective was to use the two dimensional cascade models to better understand the blade interaction effects that occur in the Wells Turbine. The model was used to analyse and compare three different blade profiles at different cascade settings. This paper presents the results of the numerical investigation, the validation of the results and the subsequent analysis.


Sign in / Sign up

Export Citation Format

Share Document