A Fault Detecting Scheme for Short-Circuited Turn in a Permanent Magnet Synchronous Motor through a Current Harmonic Monitoring

2010 ◽  
Vol 15 (3) ◽  
pp. 167-178
Author(s):  
Kyeong-Hwa Kim ◽  
Bon-Gwan Gu ◽  
In-Soung Jung
2020 ◽  
pp. 107754632098246
Author(s):  
Peiling Cui ◽  
Fanjun Zheng ◽  
Xinxiu Zhou ◽  
Wensi Li

Permanent magnet synchronous motor always suffers from air gap field distortion and inverter nonlinearity, which lead to the harmonic components in motor currents. A resonant controller is a remarkable control method to eliminate periodic disturbance, whereas the conventional resonant controller is limited by narrow bandwidth and phase lag. This article presents a novel resonant controller with a precise phase compensation method for a permanent magnet synchronous motor to suppress the current harmonics. Based on the analysis of the current harmonic characteristics, the proposed resonant controller for rejecting a set of selected current harmonic components is plugged in the current loop, and it is parallel to the traditional proportional–integral controller. Furthermore, the stability analysis of the proposed resonant controller is investigated, and the parameters are tuned to get a satisfactory performance. Compared with the conventional resonant controller, the proposed resonant controller can achieve good steady-state performance, dynamic performance, and frequency adaptivity performance, simultaneously. Finally, the experimental results demonstrate the effectiveness of the proposed suppression scheme.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1583
Author(s):  
Wei-Tse Kao ◽  
Jonq-Chin Hwang ◽  
Jia-En Liu

This study aimed to develop a three-phase permanent-magnet synchronous motor drive system with improvement in current harmonics. Considering the harmonic components in the induced electromotive force of a permanent-magnet synchronous motor, the offline response of the induced electromotive force (EMF) was measured for fast Fourier analysis, the main harmonic components were obtained, and the voltage required to reduce the current harmonic components in the corresponding direct (d-axis) and quadrature (q-axis) axes was calculated. In the closed-loop control of the direct axis and quadrature axis current in the rotor reference frame, the compensation amount of the induced EMF with harmonic components was added. Compared with the online adjustment of current harmonic injection, this simplifies the control strategy. The drive system used a 32-bit digital signal processor (DSP) TMS320F28069 as the control core, the control strategies were implemented in software, and a resolver with a resolver-to-digital converter (RDC) was used for the feedback of angular position and speed. The actual measurement results of the current harmonic improvement control show that the total harmonic distortion of the three-phase current was reduced from 5.30% to 2.31%, and the electromagnetic torque ripple was reduced from 15.28% to 5.98%. The actual measurement results verify the feasibility of this method.


2021 ◽  
Vol 11 (22) ◽  
pp. 10840
Author(s):  
Chenhui Zhou ◽  
Feng Yu ◽  
Chenguang Zhu ◽  
Jingfeng Mao

Permanent magnet synchronous motors and their relevant control techniques have become more and more prevalent in electric vehicle driving applications because of their outstanding performance. This paper studies a simple and effective sensorless scheme based on a current observer for a permanent magnet synchronous motor powered by a three-level inverter, which avoids the injection of a high-frequency signal and the observation of back-electromotive force. In this way, a current observer is constructed to observe d–q-axes currents by relying on an extended-current model. Thereafter, the position and speed of the machine can be extracted from two PI controllers associated with the d–q-axes current-tracking errors. Meanwhile, it takes into account the model predictive current control with neutral-point voltage balance to maintain the stability of the three-level inverter system. In general, this scheme realizes sensorless operation in a full-speed domain and is no longer limited by the types of inverter and method used.


Sign in / Sign up

Export Citation Format

Share Document