scholarly journals Synthesis of 2’-5’-oligoadenylates and study on their effect on proliferation and migration of bone marrow stem cells of mice in vitro and in vivo

2007 ◽  
Vol 23 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Z. Yu. Tkachuk ◽  
I. Ya. Dubey ◽  
T. G. Yakovenko ◽  
L. I. Semernikova ◽  
S. O. Shapoval ◽  
...  
Nephrology ◽  
2015 ◽  
Vol 20 (9) ◽  
pp. 591-600 ◽  
Author(s):  
Juan He ◽  
Yan Wang ◽  
Xingyan Lu ◽  
Bei Zhu ◽  
Xiaohua Pei ◽  
...  

Author(s):  
Janos Kanczler ◽  
Rahul S. Tare ◽  
Patrick Stumpf ◽  
Timothy J. Noble ◽  
Cameron Black ◽  
...  

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Xin Li ◽  
Yuan Xiao ◽  
Yuqi Cui ◽  
Hua Zhu ◽  
Chandrakala A Narasimhulu ◽  
...  

Aims: cell-based therapy with bone marrow stem cells (MSCs) remains a viable option for tissue repair and regeneration. One of the major challenges for cell-based therapy is the limited survival of the cells after in vivo administration. The exact mechanism(s) for impaired in vivo survival of the implanted MSCs remains to be defined. Oxidized low-density lipid protein (ox-LDL) is a natural product in human blood, and the major contributor to the development of atherosclerosis. The present study was to investigate the effect of ox-LDL on the survival of bone marrow stem cells and the mechanisms in vitro. Methods and Results: Rat bone marrow multipotent adult progenitor cells (MAPCs) were treated with ox-LDL (with the final concentration of 10 and 20 ug/ml) for up to 48 hours. Exposure to ox-LDL resulted in significant cell death and apoptosis of MAPCs in association with a significant increase in LDH release in the conditioned media in a dose- and time-dependent manner, indicating significant cell membrane damage. The membrane damage was further confirmed with the rapid entry of the small fluorescent dye FM1-43 as detected using confocal microscope. Ox-LDL generated a significant amount of reactive oxygen species (ROS) in the culture system as measured with electron paramagnetic resonance spectroscopy. The antioxidant N-acetylcysteine (NAC, 0.1 mM) completely inhibited the production of ROS from ox-LDL. However, it didn’t prevent ox-LDL-induced cell death or apoptosis. However, pre-treatment of the cells with the specific membrane protective recombinant human MG53 protein (rhMG53)(66 ug/ml, final concentration) significantly, reduced LDH release and the entry of FM1-43 dye into the cells exposed to ox-LDL. Conclusion: Ox-LDL enhanced cell death and apoptosis of MAPCs with a mechanism independent of ROS generation in vitro. Ox-LDL impaired the survival of MAPCs partially through cell membrane damage in vitro.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Han-Tsung Liao ◽  
Yo-Yu Chen ◽  
Yu-Ting Lai ◽  
Ming-Fa Hsieh ◽  
Cho-Pei Jiang

The study described a novel bone tissue scaffold fabricated by computer-aided, air pressure-aided deposition system to control the macro- and microstructure precisely. The porcine bone marrow stem cells (PBMSCs) seeded on either mPEG-PCL-mPEG (PCL) or mPEG-PCL-mPEG/hydroxyapatite (PCL/HA) composite scaffold were cultured under osteogenic medium to test the ability of osteogenesisin vitro. The experimental outcomes indicated that both scaffolds possessed adequate pore size, porosity, and hydrophilicity for the attachment and proliferation of PBMSCs and the PBMSCs expressed upregulated genes of osteogensis and angiogenesis in similar manner on both scaffolds. The major differences between these two types of the scaffolds were the addition of HA leading to higher hardness of PCL/HA scaffold, cell proliferation, and VEGF gene expression in PCL/HA scaffold. However, thein vivobone forming efficacy between PBMSCs seeded PCL and PCL/HA scaffold was different from thein vitroresults. The outcome indicated that the PCL/HA scaffold which had bone-mimetic environment due to the addition of HA resulted in better bone regeneration and mechanical strength than those of PCL scaffold. Therefore, providing a bone-mimetic scaffold is another crucial factor for bone tissue engineering in addition to the biocompatibility, 3D architecture with high porosity, and interpored connection.


2007 ◽  
Vol 2 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Si Hyun Bae ◽  
Jong Young Choi ◽  
Seung Kew Yoon ◽  
Il-Hoan Oh ◽  
Kun Ho Yoon ◽  
...  

2021 ◽  
Vol 30 ◽  
pp. 096368972199377
Author(s):  
Rui Zhang ◽  
Qiaoxia Zhang ◽  
Zhiyu Zou ◽  
Zheng Li ◽  
Meng Jin ◽  
...  

Mesenchymal stem cells derived from bone marrows (BMSCs) and curcumin derived from turmeric were used for osteoarthritis (OA) treatment, respectively. We invested the effects of curcumin supplementation for BMSC therapeutic effects. In vitro, rat BMSCs were identified by dual-immunofluorescent staining of CD44 and CD90, and flow cytometry. Primary articular chondrocytes were identified by toluidine blue staining and immunofluorescent staining of Col2a1. EdU incorporation, migration assay, real-time quantitative polymerase chain reaction, and Western blot analyses were performed to evaluate the alterations of chondrocytes cocultured with BMSCs. In vivo, the rat model of OA was established by monoiodoacetic acid. After intra-articular injection of allogeneic BMSCs, articular cartilage damage and OA progression were evaluated by histological staining, and Osteoarthritis Research Society International and Mankin score evaluation. Although curcumin alone did not improve cell viability of primary articular chondrocytes, it promoted proliferation and migration of chondrocytes when cocultured with BMSCs. Meanwhile, the expression of anabolic genes in chondrocytes was remarkably increased both at mRNA and protein levels. In OA rats, curcumin and BMSCs cooperated to greatly promote articular cartilage repair and retard OA progression. Therefore, curcumin supplementation enhanced the BMSC function for the proliferation and migration of articular chondrocytes, and anabolic gene expression of extracellular matrix in articular chondrocytes in vitro, and the generation of articular cartilage in vivo. Our study shed light on the potential clinical application of curcumin cooperated with BMSCs in cartilage repair for OA treatment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lei Wang ◽  
Shaojie Shi ◽  
Ruiping Bai ◽  
Yue Wang ◽  
Zhao Guo ◽  
...  

Abstract Background Patients with type 2 diabetes mellitus (T2DM), especially those with poor glycemic control, are characterized by low bone mass and destruction of bone microstructure. Nowadays, autologous mesenchymal stem cells (auto-MSCs) have been used to repair defects and promote tissue regeneration due to handy source, low immunogenicity and self-renewing and multi-differentiating potential. However, T2DM changed the biological properties of auto-MSCs, and investigating the most suitable auto-MSCs for T2DM patients becomes a focus in tissue engineering. Results In this research, we compared the biological characteristics of adipose-derived stem cells (ASCs) and bone marrow stem cells (BMSCs) derived from T2DM rats. These results demonstrated that ASCs had a higher proliferation rate, colony-formation and cell-sheet forming ability, while BMSCs got better osteogenesis-related staining, expression of osteogenesis-related genes and proteins, and osteogenic capacity in vitro. Conclusions As it turned out, ASCs from T2DM had a higher proliferation, while BMSCs had significantly higher osteogenetic ability no matter in vitro and in vivo. Therefore, we should take into account the specific and dominated properties of MSC according to different needs to optimize the protocols and improve clinical outcomes for tissue regeneration of T2DM patients.


2021 ◽  
Vol 11 (12) ◽  
pp. 2357-2366
Author(s):  
Xiaopeng Guo ◽  
Yingsong Liu ◽  
Mingzhu Wei

We aimed to explore the mechanism by how LX4211 affects bone marrow mesenchymal stem cells (BMSCs) during ischemia-reperfusion (I/R). BMSCs were extracted and treated with LX4211 followed by analysis of cell proliferation and migration by CCK-8, Transwell assay and wound healing tests, cell apoptosis and cycle by flow cytometry, exosomes and VEGFA secretion by immunoenzyme-linked adsorption. BMSCs treated with LX4211 or DMSO were administrated into mice with blood perfusion and capillary or arteriolar density was detected. Treatment with LX4211 significantly inhibited BMSCs proliferation, increased apoptosis and activated AMPK/ACC signaling along with reduced the number of exosomes and VEGFA level and impaired physiological functions. In vivo experiments determined that LX4211 alleviated I/R of lower limbs by inhibiting the muscle retention of BMSCs and paracrine. In conclusion, LX4211 treatment can delay the blood recovery of ischemic non-diabetic mice by reducing the proliferation, migration and impairing paracrine of BMSCs.


Sign in / Sign up

Export Citation Format

Share Document