scholarly journals Uniformly Generated Submodules of Permutation Modules

1998 ◽  
Vol 5 (20) ◽  
Author(s):  
Søren Riis ◽  
Meera Sitharam

This paper is motivated by a link between algebraic proof<br />complexity and the representation theory of the finite symmetric<br />groups. Our perspective leads to a series of non-traditional<br />problems in the representation theory of Sn.<br />Most of our technical results concern the structure of "uniformly"<br />generated submodules of permutation modules. We consider<br />(for example) sequences Wn of submodules of the permutation<br />modules M(n−k;1k) and prove that if the modules Wn are<br />given in a uniform way - which we make precise - the dimension<br />p(n) of Wn (as a vector space) is a single polynomial with rational<br />coefficients, for all but finitely many "singular" values of n. Furthermore, we show that dim(Wn) < p(n) for each singular value of n >= 4k. The results have a non-traditional flavor arising from the study of the irreducible structure of the submodules Wn beyond isomorphism types. We sketch the link between our structure theorems and proof complexity questions, which can be viewed as special cases of the famous NP vs. co-NP problem in complexity theory. In particular, we focus on the efficiency of proof systems for showing membership in polynomial ideals, for example, based on Hilbert's Nullstellensatz.

2020 ◽  
Vol 30 (6) ◽  
pp. 2885-2923
Author(s):  
Robert J. Martin ◽  
Jendrik Voss ◽  
Ionel-Dumitrel Ghiba ◽  
Oliver Sander ◽  
Patrizio Neff

Abstract We consider conformally invariant energies W on the group $${{\,\mathrm{GL}\,}}^{\!+}(2)$$ GL + ( 2 ) of $$2\times 2$$ 2 × 2 -matrices with positive determinant, i.e., $$W:{{\,\mathrm{GL}\,}}^{\!+}(2)\rightarrow {\mathbb {R}}$$ W : GL + ( 2 ) → R such that $$\begin{aligned} W(A\, F\, B) = W(F) \quad \text {for all }\; A,B\in \{a\, R\in {{\,\mathrm{GL}\,}}^{\!+}(2) \,|\,a\in (0,\infty ),\; R\in {{\,\mathrm{SO}\,}}(2)\}, \end{aligned}$$ W ( A F B ) = W ( F ) for all A , B ∈ { a R ∈ GL + ( 2 ) | a ∈ ( 0 , ∞ ) , R ∈ SO ( 2 ) } , where $${{\,\mathrm{SO}\,}}(2)$$ SO ( 2 ) denotes the special orthogonal group and provides an explicit formula for the (notoriously difficult to compute) quasiconvex envelope of these functions. Our results, which are based on the representation $$W(F)=h\bigl (\frac{\lambda _1}{\lambda _2}\bigr )$$ W ( F ) = h ( λ 1 λ 2 ) of W in terms of the singular values $$\lambda _1,\lambda _2$$ λ 1 , λ 2 of F, are applied to a number of example energies in order to demonstrate the convenience of the singular-value-based expression compared to the more common representation in terms of the distortion $${\mathbb {K}}:=\frac{1}{2}\frac{\Vert F \Vert ^2}{\det F}$$ K : = 1 2 ‖ F ‖ 2 det F . Applying our results, we answer a conjecture by Adamowicz (in: Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni, vol 18(2), pp 163, 2007) and discuss a connection between polyconvexity and the Grötzsch free boundary value problem. Special cases of our results can also be obtained from earlier works by Astala et al. (Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton University Press, Princeton, 2008) and Yan (Trans Am Math Soc 355(12):4755–4765, 2003). Since the restricted domain of the energy functions in question poses additional difficulties with respect to the notion of quasiconvexity compared to the case of globally defined real-valued functions, we also discuss more general properties related to the $$W^{1,p}$$ W 1 , p -quasiconvex envelope on the domain $${{\,\mathrm{GL}\,}}^{\!+}(n)$$ GL + ( n ) which, in particular, ensure that a stricter version of Dacorogna’s formula is applicable to conformally invariant energies on $${{\,\mathrm{GL}\,}}^{\!+}(2)$$ GL + ( 2 ) .


2021 ◽  
Vol 13 (1) ◽  
pp. 1-25
Author(s):  
Dmitry Itsykson ◽  
Alexander Okhotin ◽  
Vsevolod Oparin

The partial string avoidability problem is stated as follows: given a finite set of strings with possible “holes” (wildcard symbols), determine whether there exists a two-sided infinite string containing no substrings from this set, assuming that a hole matches every symbol. The problem is known to be NP-hard and in PSPACE, and this article establishes its PSPACE-completeness. Next, string avoidability over the binary alphabet is interpreted as a version of conjunctive normal form satisfiability problem, where each clause has infinitely many shifted variants. Non-satisfiability of these formulas can be proved using variants of classical propositional proof systems, augmented with derivation rules for shifting proof lines (such as clauses, inequalities, polynomials, etc.). First, it is proved that there is a particular formula that has a short refutation in Resolution with a shift rule but requires classical proofs of exponential size. At the same time, it is shown that exponential lower bounds for classical proof systems can be translated for their shifted versions. Finally, it is shown that superpolynomial lower bounds on the size of shifted proofs would separate NP from PSPACE; a connection to lower bounds on circuit complexity is also established.


2016 ◽  
Vol 05 (04) ◽  
pp. 1650015 ◽  
Author(s):  
Mario Kieburg ◽  
Holger Kösters

We use classical results from harmonic analysis on matrix spaces to investigate the relation between the joint densities of the singular values and the eigenvalues for complex random matrices which are bi-unitarily invariant (also known as isotropic or unitary rotation invariant). We prove that each of these joint densities determines the other one. Moreover, we construct an explicit formula relating both joint densities at finite matrix dimension. This relation covers probability densities as well as signed densities. With the help of this relation we derive general analytical relations among the corresponding kernels and biorthogonal functions for a specific class of polynomial ensembles. Furthermore, we show how to generalize the relation between the singular value and eigenvalue statistics to certain situations when the ensemble is deformed by a term which breaks the bi-unitary invariance.


1949 ◽  
Vol 1 (2) ◽  
pp. 153-165 ◽  
Author(s):  
Marston Morse ◽  
William Transue

In a series of papers which will follow this paper the authors will present a theory of functionals which are bilinear over a product A × B of two normed vector spaces A and B. This theory will include a representation theory, a variational theory, and a spectral theory. The associated characteristic equations will include as special cases the Jacobi equations of the classical variational theory when n = 1, and self-adjoint integrodifferential equations of very general type. The bilinear theory is oriented by the needs of non-linear and non-bilinear analysis in the large.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Muhammad Mohsin Riaz ◽  
Abdul Ghafoor

Singular value decomposition and information theoretic criterion-based image enhancement is proposed for through-wall imaging. The scheme is capable of discriminating target, clutter, and noise subspaces. Information theoretic criterion is used with conventional singular value decomposition to find number of target singular values. Furthermore, wavelet transform-based denoising is performed (to further suppress noise signals) by estimating noise variance. Proposed scheme works also for extracting multiple targets in heavy cluttered through-wall images. Simulation results are compared on the basis of mean square error, peak signal to noise ratio, and visual inspection.


1975 ◽  
Vol 78 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Simon Wassermann

A deep result in the theory of W*-tensor products, the Commutation theorem, states that if M and N are W*-algebras faithfully represented as von Neumann algebras on the Hilbert spaces H and K, respectively, then the commutant in L(H ⊗ K) of the W*-tensor product of M and N coincides with the W*-tensor product of M′ and N′. Although special cases of this theorem were established successively by Misonou (2) and Sakai (3), the validity of the general result remained conjectural until the advent of the Tomita-Takesaki theory of Modular Hilbert algebras (6). As formulated, the Commutation theorem is a spatial result; that is, the W*-algebras in its statement are taken to act on specific Hilbert spaces. Not surprisingly, therefore, known proofs rely heavily on techniques of representation theory.


1999 ◽  
Vol 77 (8) ◽  
pp. 603-633 ◽  
Author(s):  
J Grindlay

The variational equations and the evolution matrix are introduced and used to discuss the stability of a bound Hamiltonian trajectory. Singular-value decomposition is applied to the evolution matrix. Singular values and Lyapunov exponents are defined and their properties described. The singular-value expansion of the phase-space velocity is derived. Singular values and Lyapunov exponents are used to characterize the stability behaviour of five simple systems, namely, the nonlinear oscillator with cubic anharmonicity, the quasi-periodic Mathieu equation, the Hénon-Heilesmodel, the 4+2 linear chain with cubic anharmonicity, and an integrable system of arbitrary order.PACS Nos.: 03.20, 05.20


Author(s):  
Olaf Beyersdorff ◽  
Mikoláš Janota ◽  
Florian Lonsing ◽  
Martina Seidl

Solvers for quantified Boolean formulas (QBF) have become powerful tools for tackling hard computational problems from various application domains, even beyond the scope of SAT. This chapter gives a description of the main algorithmic paradigms for QBF solving, including quantified conflict driven clause learning (QCDCL), expansion-based solving, dependency schemes, and QBF preprocessing. Particular emphasis is laid on the connections of these solving approaches to QBF proof systems: Q-Resolution and its variants in the case of QCDCL, expansion QBF resolution calculi for expansion-based solving, and QRAT for preprocessing. The chapter also surveys the relations between the various QBF proof systems and results on their proof complexity, thereby shedding light on the diverse performance characteristics of different solving approaches that are observed in practice.


Sign in / Sign up

Export Citation Format

Share Document