A Unifying Approach to Goal-Directed Evaluation
Goal-directed evaluation, as embodied in Icon and Snobol, is built on the notions of backtracking and of generating successive results, and therefore it has always been something of a challenge to specify and implement. In this article, we address this challenge using computational monads and partial evaluation.<br /> <br />We consider a subset of Icon and we specify it with a monadic semantics and a list monad. We then consider a spectrum of monads that also fit the bill, and we relate them to each other. For example, we derive a continuation monad as a Church encoding of the list monad. The resulting semantics coincides with Gudeman's continuation semantics of Icon.<br /> <br />We then compile Icon programs by specializing their interpreter (i.e., by using the first Futamura projection), using type-directed partial evaluation. Through various back ends, including a run-time code generator, we generate ML code, C code, and OCaml byte code. Binding-time analysis and partial evaluation of the continuation-based interpreter automatically give rise to C programs that coincide with the result of Proebsting's optimized compiler.