scholarly journals Existence of solutions to nonlinear Sturm-Liouville problems with large nonlinearities

2021 ◽  
pp. 193-210
Author(s):  
Benjamin Freedman ◽  
Jesús Rodríguez
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zohreh Zeinalabedini Charandabi ◽  
Hakimeh Mohammadi ◽  
Shahram Rezapour ◽  
Hashem Parvaneh Masiha

AbstractThe Sturm–Liouville differential equation is one of interesting problems which has been studied by researchers during recent decades. We study the existence of a solution for partial fractional Sturm–Liouville equation by using the α-ψ-contractive mappings. Also, we give an illustrative example. By using the α-ψ-multifunctions, we prove the existence of solutions for inclusion version of the partial fractional Sturm–Liouville problem. Finally by providing another example and some figures, we try to illustrate the related inclusion result.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zihan Li ◽  
Xiao-Bao Shu ◽  
Tengyuan Miao

AbstractIn this article, we consider the existence of solutions to the Sturm–Liouville differential equation with random impulses and boundary value problems. We first study the Green function of the Sturm–Liouville differential equation with random impulses. Then, we get the equivalent integral equation of the random impulsive differential equation. Based on this integral equation, we use Dhage’s fixed point theorem to prove the existence of solutions to the equation, and the theorem is extended to the general second order nonlinear random impulsive differential equations. Then we use the upper and lower solution method to give a monotonic iterative sequence of the generalized random impulsive Sturm–Liouville differential equations and prove that it is convergent. Finally, we give two concrete examples to verify the correctness of the results.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Sutrima Sutrima ◽  
Christiana Rini Indrati ◽  
Lina Aryati

There are many industrial and biological reaction diffusion systems which involve the time-varying features where certain parameters of the system change during the process. A part of the transport-reaction phenomena is often modelled as an abstract nonautonomous equation generated by a (generalized) Riesz-spectral operator on a Hilbert space. The basic problems related to the equations are existence of solutions of the equations and how to control dynamical behaviour of the equations. In contrast to the autonomous control problems, theory of controllability and observability for the nonautonomous systems is less well established. In this paper, we consider some relevant aspects regarding the controllability and observability for the nonautonomous Riesz-spectral systems including the Sturm-Liouville systems using a C0-quasi-semigroup approach. Three examples are provided. The first is related to sufficient conditions for the existence of solutions and the others are to confirm the approximate controllability and observability of the nonautonomous Riesz-spectral systems and Sturm-Liouville systems, respectively.


1991 ◽  
Vol 119 (3-4) ◽  
pp. 347-365 ◽  
Author(s):  
Robert Stephen Cantrell

SynopsisThe set of solutions to the two-parameter systemhas been shown in a preceding paper of the author to exhibit a topological-functional analytic structure analogous to the structure of solution sets for nonlinear Sturm–Liouville boundary value problems. As the parameter λ and µ are varied, transitions in the solution set occur, first from trivial solutions to solutions (u, 0) with u having n nodes on (a, b) or solutions (0, v) with v having m nodes on (a, b), and then to solutions of the form (u, v), where u has n nodes on (a, b) and v has m nodes on (a, b), with n possibly different from m. Moreover, each transition is global in an appropriate bifurcation theoretic sense, with preservation of nodal structure. This paper explores these phenomena more closely, focusing on the range of parameters (λ, µ) for the existence of solutions (u, v) with u having n nodes on (a, b) and v having m nodes on (a, b) and its dependence on the assumptions placed on the coupling functions f and g. The principal tools of the analysis are the Alexander–Antman Bifurcation Theorem and a priori estimate techniques based on the maximum principle.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mingliang Song ◽  
Ping Chen

Abstract This paper investigates the existence of solutions to subquadratic operator equations with convex nonlinearities and resonance by means of the index theory for self-adjoint linear operators developed by Dong and dual least action principle developed by Clarke and Ekeland. Applying the results to subquadratic convex Hamiltonian systems satisfying several boundary value conditions including Bolza boundary value conditions, generalized periodic boundary value conditions and Sturm–Liouville boundary value conditions yield some new theorems concerning the existence of solutions or nontrivial solutions. In particular, some famous results about solutions to subquadratic convex Hamiltonian systems by Mawhin and Willem and Ekeland are special cases of the theorems.


Sign in / Sign up

Export Citation Format

Share Document