scholarly journals On nonlinear Volterra-Fredholm type discrete fractional sum inequalities

2021 ◽  
pp. 17-33
Author(s):  
Subhash Kendre ◽  
Nagesh Kale
Keyword(s):  
2011 ◽  
Vol 2011 ◽  
pp. 1-24 ◽  
Author(s):  
Bin Zheng ◽  
Qinghua Feng

Some new Volterra-Fredholm-type discrete inequalities in two independent variables are established, which provide a handy tool in the study of qualitative and quantitative properties of solutions of certain difference equations. The established results extend some known results in the literature.


Author(s):  
Mohammed Charif Bounaya ◽  
Samir Lemita ◽  
Mourad Ghiat ◽  
Mohamed Zine Aissaoui

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yazhou Tian ◽  
A. A. El-Deeb ◽  
Fanwei Meng

We are devoted to studying a class of nonlinear delay Volterra–Fredholm type dynamic integral inequalities on time scales, which can provide explicit bounds on unknown functions. The obtained results can be utilized to investigate the qualitative theory of nonlinear delay Volterra–Fredholm type dynamic equations. An example is also presented to illustrate the theoretical results.


Author(s):  
Aleksandr N. Tynda ◽  
Konstantin A. Timoshenkov

In this paper we propose numerical methods for solving interior and exterior boundary-value problems for the Helmholtz and Laplace equations in complex three-dimensional domains. The method is based on their reduction to boundary integral equations in R2. Using the potentials of the simple and double layers, we obtain boundary integral equations of the Fredholm type with respect to unknown density for Dirichlet and Neumann boundary value problems. As a result of applying integral equations along the boundary of the domain, the dimension of problems is reduced by one. In order to approximate solutions of the obtained weakly singular Fredholm integral equations we suggest general numerical method based on spline approximation of solutions and on the use of adaptive cubatures that take into account the singularities of the kernels. When constructing cubature formulas, essentially non-uniform graded meshes are constructed with grading exponent that depends on the smoothness of the input data. The effectiveness of the method is illustrated with some numerical experiments.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Nabil Mlaiki ◽  
Thabet Abdeljawad ◽  
Wasfi Shatanawi ◽  
Hassen Aydi ◽  
Yaé Ulrich Gaba

In this manuscript, we introduce the concept of complex-valued triple controlled metric spaces as an extension of rectangular metric type spaces. To validate our hypotheses and to show the usability of the Banach and Kannan fixed point results discussed herein, we present an application on Fredholm-type integral equations and an application on higher degree polynomial equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kelong Cheng ◽  
Chunxiang Guo

Some linear and nonlinear Gamidov type integral inequalities in two variables are established, which can give the explicit bounds on the solutions to a class of Volterra-Fredholm integral equations. Some examples of application are presented to show boundedness and uniqueness of solutions of a Volterra-Fredholm type integral equation.


2013 ◽  
Vol 46 (2) ◽  
Author(s):  
Saïd Abbas ◽  
Mouffak Benchohra

AbstractIn this paper, we prove the arcwise connectedness of the solution set of a nonclosed, nonconvex Fredholm type, Riemann–Liouville integral inclusion of fractional order.


2014 ◽  
Vol 571-572 ◽  
pp. 132-138
Author(s):  
Wu Sheng Wang ◽  
Chun Miao Huang

In this paper, we discuss a class of new weakly singular Volterra-Fredholm difference inequality, which is solved using change of variable, discrete Jensen inequality, Beta function, the mean-value theorem for integrals and amplification method, and explicit bounds for the unknown functions is given clearly. The derived results can be applied in the study of fractional difference equations in engineering.


Author(s):  
Sergey M. Ermakov ◽  
◽  
Maxim G. Smilovitskiy ◽  

Monte-Carlo approach towards solving Cauchy problem for large systems of linear differential equations is being proposed in this paper. Firstly, a quick overlook of previously obtained results from applying the approach towards Fredholm-type integral equations is being made. In the main part of the paper, a similar method is being applied towards a linear system of ODE. It is transformed into an equivalent system of Volterra-type integral equations, which relaxes certain limitations being present due to necessary conditions for convergence of majorant series. The following theorems are being stated. Theorem 1 provides necessary compliance conditions that need to be imposed upon initial and transition distributions of a required Markov chain, for which an equality between estimate’s expectation and a desirable vector product would hold. Theorem 2 formulates an equation that governs estimate’s variance, while theorem 3 states a form for Markov chain parameters that minimise the variance. Proofs are given, following the statements. A system of linear ODEs that describe a closed queue made up of ten virtual machines and seven virtual service hubs is then solved using the proposed approach. Solutions are being obtained both for a system with constant coefficients and time-variable coefficients, where breakdown intensity is dependent on t. Comparison is being made between Monte-Carlo and Rungge Kutta obtained solutions. The results can be found in corresponding tables.


Sign in / Sign up

Export Citation Format

Share Document