scholarly journals Behavior of stable rhenium isotopes during magmatic processes and implications for the composition of the bulk silicate Earth

2021 ◽  
Author(s):  
Wenhao Wang ◽  
Alex Dickson ◽  
Julie Prytulak ◽  
Paul Savage ◽  
Euan Nisbet ◽  
...  
2016 ◽  
Author(s):  
Brody Friesenhahn ◽  
◽  
Rita C. Economos ◽  
Adam J. Ianno ◽  
Robert E. Powell
Keyword(s):  

2017 ◽  
Author(s):  
Calvin G. Barnes ◽  
◽  
Melanie A. Barnes ◽  
Charlotte M. Allen

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sune G. Nielsen ◽  
David V. Bekaert ◽  
Maureen Auro

AbstractIsotopic measurements of lunar and terrestrial rocks have revealed that, unlike any other body in the solar system, the Moon is indistinguishable from the Earth for nearly every isotopic system. This observation, however, contradicts predictions by the standard model for the origin of the Moon, the canonical giant impact. Here we show that the vanadium isotopic composition of the Moon is offset from that of the bulk silicate Earth by 0.18 ± 0.04 parts per thousand towards the chondritic value. This offset most likely results from isotope fractionation on proto-Earth during the main stage of terrestrial core formation (pre-giant impact), followed by a canonical giant impact where ~80% of the Moon originates from the impactor of chondritic composition. Our data refute the possibility of post-giant impact equilibration between the Earth and Moon, and implies that the impactor and proto-Earth mainly accreted from a common isotopic reservoir in the inner solar system.


2019 ◽  
Vol 60 (5) ◽  
pp. 907-944 ◽  
Author(s):  
Jacqueline Vander Auwera ◽  
Olivier Namur ◽  
Adeline Dutrieux ◽  
Camilla Maya Wilkinson ◽  
Morgan Ganerød ◽  
...  

Abstract Where and how arc magmas are generated and differentiated are still debated and these questions are investigated in the context of part of the Andean arc (Chilean Southern Volcanic Zone) where the continental crust is thin. Results are presented for the La Picada stratovolcano (41°S) that belongs to the Central Southern Volcanic Zone (CSVZ) (38°S–41·5°S, Chile) which results from the subduction of the Nazca plate beneath the western margin of the South American continent. Forty-seven representative samples collected from different units of the volcano define a differentiation trend from basalt to basaltic andesite and dacite (50·9 to 65·6 wt % SiO2). This trend straddles the tholeiitic and calc-alkaline fields and displays a conspicuous compositional Daly Gap between 57·0 and 62·7 wt % SiO2. Interstitial, mostly dacitic, glass pockets extend the trend to 76·0 wt % SiO2. Mineral compositions and geochemical data indicate that differentiation from the basaltic parent magmas to the dacites occurred in the upper crust (∼0·2 GPa) with no sign of an intermediate fractionation stage in the lower crust. However, we have currently no precise constraint on the depth of differentiation from the primary magmas to the basaltic parent magmas. Stalling of the basaltic parent magmas in the upper crust could have been controlled by the occurrence of a major crustal discontinuity, by vapor saturation that induced volatile exsolution resulting in an increase of melt viscosity, or by both processes acting concomitantly. The observed Daly Gap thus results from upper crustal magmatic processes. Samples from both sides of the Daly Gap show contrasting textures: basalts and basaltic andesites, found as lavas, are rich in macrocrysts, whereas dacites, only observed in crosscutting dykes, are very poor in macrocrysts. Moreover, modelling of the fractional crystallization process indicates a total fractionation of 43% to reach the most evolved basaltic andesites. The Daly Gap is thus interpreted as resulting from critical crystallinity that was reached in the basaltic andesites within the main storage region, precluding eruption of more evolved lavas. Some interstitial dacitic melt was extracted from the crystal mush and emplaced as dykes, possibly connected to small dacitic domes, now eroded away. In addition to the overall differentiation trend, the basalts to basaltic andesites display variable MgO, Cr and Ni contents at a given SiO2. Crystal accumulation and high pressure fractionation fail to predict this geochemical variability which is interpreted as resulting from variable extents of fractional crystallization. Geothermobarometry using recalculated primary magmas indicates last equilibration at about 1·3–1·5 GPa and at a temperature higher than the anhydrous peridotite solidus, pointing to a potential role of decompression melting. However, because the basalts are enriched in slab components and H2O compared to N-MORB, wet melting is highly likely.


Sign in / Sign up

Export Citation Format

Share Document