scholarly journals Sedimentological And Stratigraphical Analysis Of Kaki Bukit Formation (Lower Setul Member) At Teluk Ewa, Pulau Langkawi

2021 ◽  
Vol 72 ◽  
pp. 25-35
Author(s):  
Mohamad Ezanie Abu Samah ◽  
◽  
Che Aziz Ali ◽  
Kamal Roslan Mohamed ◽  
◽  
...  

The identification of new units on the carbonate sequence of Teluk Ewa (from Tg. Mendidih to Teluk Ewa) has given an idea for the review of stratigraphic succession of Kaki Bukit Formation (Lower Setul Member). The analysis is related to a sedimentology study, where the sedimentary sequences formed as a mixed siliciclastic–carbonate shallow marine system that combines the carbonate and silisiclastic deposits. Eight facies have been recognised such as (1) argillite facies, (2) interlayer of mudstone and limestone facies, (3) wavy stromatolites limestone facies, (4) linear stromatolites limestone facies, (5) heterolithic of mudstone-limestone facies, (6) shale facies, (7) massive limestone facies and (8) thrombolites limestone facies. Each facies are divided into four litostratigraphic units based on the evaluation from Malaysian Stratigraphic Nomenclature Committee (1997) and North American Stratigraphic Code 2005. (1) The clastic unit referring to the uppertmost part of Machinchang Formation maintains it's name. Meanwhile, the suggested nomenclature for the new units such as (2) The Sabung Member is referring to the basal carbonate unit comprising microbial facies and mixed silisiclastic-carbonate sediment. (3) The Pesak Seluar Member in the middle is a silisiclastic unit that consists of shale facies and (4) The Ewa Member at the top representing the upper limestone unit. All units show a similar litostratigraphic characteristics that are found in Tarutao Group, Pante Malaka Formation, Rung Nok Formation and Lae Tong Formation in Thailand as described by Wongwanich et al. (1990; 2002) and Imsamut & Abdul Rahman (2017).

1970 ◽  
Vol 107 (4) ◽  
pp. 297-317 ◽  
Author(s):  
M. G. Laird ◽  
W. S. McKerrow

SummaryThis work describes the Wenlock sedimentary sequences south of Killary Harbour where the fullest successions in north-west Galway are exposed; much of the Upper Silurian in the east (Joyces Country) has been removed by erosion.The Wenlock beds (the Upper Owenduff and Killary Harbour Groups) rest on shallow marine and continental sediments (the Lower Owenduff Group) of Upper Llandovery (C5–6) age. Conglomerates near the base of the Wenlock are followed by 1,500 m of sandstones, which are mostly turbidites and which contain Middle Wenlock graptolites. These basin deposits are succeeded by a transitional sequence of rise, slope and shelf clastics, also of Middle Wenlock age. The youngest Silurian beds exposed are 800 m of red lagoonal deposits withLingula.During Wenlock times, the sediment supply to north-west Galway was mainly from the north and north-west. This observation fits well with the regional picture which places Galway near the north-west margin of a Silurian basin which extended eastwards across Ireland.


2020 ◽  
Vol 60 (2) ◽  
pp. 691
Author(s):  
Betina Bendall ◽  
Anne Forbes ◽  
Dan Revie ◽  
Rami Eid ◽  
Shannon Herley ◽  
...  

The Otway Basin is one of the best known and most actively explored of a series of Mesozoic basins formed along the southern coastline of Australia by the rifting of the Antarctic and Australian plates during the Cretaceous. The basin offers a diversity of play types, with at least three major sedimentary sequences forming conventional targets for petroleum exploration in the onshore basin. The Penola Trough in South Australia has enjoyed over 20 years of commercial hydrocarbon production from the sandstones of the Early Cretaceous Otway Group comprising the Crayfish Subgroup (Pretty Hill Formation and Katnook sandstones) and Eumeralla Formation (Windermere Sandstone Member). Lithostratigraphic characterisation and nomenclature for these sequences are poorly constrained, challenging correlation across the border into the potentially petroleum prospective Victorian Penola Trough region. The Geological Survey of Victoria (GSV), as part of the Victorian Gas Program, commissioned Chemostrat Australia to undertake an 11-well chemostratigraphic study of the Victorian Otway Basin. The South Australia Department for Energy and Mining, GSV and Chemostrat Australia are working collaboratively to develop a consistent, basin-wide schema for the stratigraphic nomenclature of the Otway Basin within a chemostratigraphic framework. Variability in the mineralogy and hence inorganic geochemistry of sediments reflects changes in provenance, lithic composition, facies changes, weathering and diagenesis. This geochemical variation enables the differentiation of apparently uniform sedimentary successions into unique sequences and packages, aiding in the resolution of complex structural relationships and facies changes. In this paper, we present the preliminary results of detailed geochemical analyses and interpretation of 15 wells from across the Otway Basin and the potential impacts on hydrocarbon prospectivity.


2019 ◽  
Vol 5 (4) ◽  
pp. 218-239 ◽  
Author(s):  
Richard Bello ◽  
Kaz Higuchi

Monthly and annual component fluxes of the surface radiation and energy budgets for the two-decade period from 1997 to 2016 are compared with the climate normal period (1981–2010) for the marine system consisting of James Bay, Hudson Bay, Hudson Strait and Foxe Basin using estimates from the North American regional reanalysis model. Reflected solar radiation has declined unevenly, primarily offshore of major rivers, in polynyas and along shore leads, both during earlier melt and later freeze up. Annually, net radiation increases are driven by albedo decreases during the summer. Over 94% of the increases in ocean heat gain during the melt season are due to increases in absorbed sunlight. Large enhanced oceanic heat losses in the late fall are almost entirely consumed by intensified convective losses of both sensible and latent heat. All the seas within the Hudson Bay Complex show a reduced rate of ocean warming over the past two decades. This outcome can be partially reconciled with the observation that all water bodies are experiencing enhanced losses of energy during extended ice-free winters that exceed enhanced gains of energy during the extended ice-free summers. The implications of seasonal changes in ice cover for future climate are discussed.


1985 ◽  
Vol 22 (7) ◽  
pp. 1001-1019 ◽  
Author(s):  
Flemming Rolle

Five dry exploratory wells were drilled through Upper Cretaceous and Tertiary sediments on the West Greenland shelf in 1976 and 1977. Two of these entered Precambrian basement, two bottomed in Paleocene or Upper Cretaceous basalt, and one in Campanian mudstone. On the basis of samples and logs supplied to the Geological Survey of Greenland the sedimentary sequence has been divided into seven new formations: the Campanian Narssarmiut Formation, consisting of coarse basement wash and black mudstone; the Campanian to Eocene Ikermiut Formation, consisting of marine organic-rich mudstone; the Upper Paleocene to Eocene Hellefisk Formation, comprising shallow-marine to paralic sandstone and mudstone; the Eocene Nukik Formation, consisting of turbiditic sandstone and mudstone; the Eocene to Oligocene Kangâmiut Formation of shelf to shallow-marine clean and argillaceous sandstone; the Oligocene to Neogene Manîtsoq Formation, consisting of coarse paralic to fan delta sandstone; and the Neogene Ataneq Formation, consisting of protected shallow-marine mudstone.The sedimentary evolution of the area fits well with earlier proposed models for the tectonic evolution of the Baffin Bay–Labrador Sea region.Potential petroleum source rocks are present in the Upper Cretaceous to Paleocene mudstone, and, even though they are largely immature in the drilled sections, they are expected to have entered the petroleum generation zone in the deeper parts of the basin. Their potential is mainly for gas, but some oil potential is also present. No reservoir rocks were encountered in the deeper parts of the sedimentary sequences, and the porous sandstones that occur higher in the sequence lack seals.


2017 ◽  
Vol 43 (2) ◽  
pp. 793
Author(s):  
E. Zoumpoulis ◽  
F. Pomoni-Papaioannou ◽  
A. Zelilidis

The shallow-marine carbonate sequence of Sami (Kefallinia isl. Fig. 1) is a part of the Upper Cretaceous carbonate platform of the Paxi zone. Detailed lithostratigraphic and microfacies analysis of that sequence revealed clear periodicities and cyclicity. The high-resolution stratigraphic analysis has shown a number of lithofacies organized in groups (lithofacies associations), suggesting, on the whole, sedimentary environments ranging from lagoonal to peritidal context. The vertical arrangement of these lithofacies allowed the identification of a cyclic recurrence of the depositional and early diagenetic features, including a meteoric overprint on top of the elementary cycles. The cycles exhibit a shallowing upward trend from shallow subtidal to inter-supratidal and hypersaline facies, in a warm shallow marine environment.


Sign in / Sign up

Export Citation Format

Share Document