Synergy versus Self-Organization in the Evolution of Complex Systems

2013 ◽  
pp. 88-121
Author(s):  
Peter A. Corning
2005 ◽  
Vol 3 (3) ◽  
pp. 335-354 ◽  
Author(s):  
Clarissa Ribeiro Pereira de Almeida ◽  
Anja Pratschke ◽  
Renata La Rocca

This paper draws on current research on complexity and design process in architecture and offers a proposal for how architects might bring complex thought to bear on the understanding of design process as a complex system, to understand architecture as a way of organizing events, and of organizing interaction. Our intention is to explore the hypothesis that the basic characteristics of complex systems – emergence, nonlinearity, self-organization, hologramaticity, and so forth – can function as effective tools for conceptualization that can usefully extend the understanding of the way architects think and act throughout the design process. To illustrate the discussions, we show how architects might bring complex thought inside a transdisciplinary design process by using models such as software engineering diagrams, and three-dimensional modeling network environments such as media to integrate, connect and ‘trans–act’.


2014 ◽  
Vol 17 (03n04) ◽  
pp. 1450016 ◽  
Author(s):  
V. I. YUKALOV ◽  
D. SORNETTE

The idea is advanced that self-organization in complex systems can be treated as decision making (as it is performed by humans) and, vice versa, decision making is nothing but a kind of self-organization in the decision maker nervous systems. A mathematical formulation is suggested based on the definition of probabilities of system states, whose particular cases characterize the probabilities of structures, patterns, scenarios, or prospects. In this general framework, it is shown that the mathematical structures of self-organization and of decision making are identical. This makes it clear how self-organization can be seen as an endogenous decision making process and, reciprocally, decision making occurs via an endogenous self-organization. The approach is illustrated by phase transitions in large statistical systems, crossovers in small statistical systems, evolutions and revolutions in social and biological systems, structural self-organization in dynamical systems, and by the probabilistic formulation of classical and behavioral decision theories. In all these cases, self-organization is described as the process of evaluating the probabilities of macroscopic states or prospects in the search for a state with the largest probability. The general way of deriving the probability measure for classical systems is the principle of minimal information, that is, the conditional entropy maximization under given constraints. Behavioral biases of decision makers can be characterized in the same way as analogous to quantum fluctuations in natural systems.


2018 ◽  
Vol 2 (1) ◽  
pp. 31 ◽  
Author(s):  
Norbert Fenzl

How order emerges from noise? How higher complexity arises from lower complexity? For what reason a certain number of open systems start interacting in a coherent way, producing new structures, building up cohesion and new structural boundaries? To answer these questions we need to precise the concepts we use to describe open and complex systems and the basic driving forces of self-organization.   We assume that self-organization processes are related to the flow and throughput of Energy and Matter and the production of system-specific Information. These two processes are intimately linked together: Energy and Material flows are the fundamental carriers of signs, which are processed by the internal structure of the system to produce system-specific structural Information (Is). So far, the present theoretical reflections are focused on the emergence of open systems and on the role of Energy Flows and Information in a self-organizing process. Based on the assumption that Energy, Mass and Information are intrinsically linked together and are fundamental aspects of the Universe, we discuss how they might be related to each other and how they are able to produce the emergence of new structures and systems. 


Author(s):  
Nikos E. Kouvaris ◽  
Albert Díaz-Guilera

The chapter “Self-Organization in Multiplex Networks” discusses the use of multiplex networks in studying complex systems and synchronization. An important question in the research of complex systems concerns the way the network structure shapes the hosted dynamics and leads to a plethora of self-organization phenomena. Complex systems consist of nodes having some intrinsic dynamics, usually nonlinear, and are connected through the links of the network. Such systems can be studied by means of discrete reaction–diffusion equations; reaction terms account for the dynamics in the nodes, whereas diffusion terms describe the coupling between them. This chapter discusses how multiplex networks are suitable for studying such systems by providing two illustrative examples of self-organization phenomena occurring in them.


2020 ◽  
Vol 8 ◽  
Author(s):  
F. Vazza ◽  
A. Feletti

We investigate the similarities between two of the most challenging and complex systems in Nature: the network of neuronal cells in the human brain, and the cosmic network of galaxies. We explore the structural, morphological, network properties and the memory capacity of these two fascinating systems, with a quantitative approach. In order to have an homogeneous analysis of both systems, our procedure does not consider the true neural connectivity but an approximation of it, based on simple proximity. The tantalizing degree of similarity that our analysis exposes seems to suggest that the self-organization of both complex systems is likely being shaped by similar principles of network dynamics, despite the radically different scales and processes at play.


Sign in / Sign up

Export Citation Format

Share Document