scholarly journals Improving Energy Efficiency by Advanced Traffic Control Systems

2015 ◽  
Vol 4 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Miroslav Vujić ◽  
Ivana Šemanjski ◽  
Pero Vidan

The problem of traffic congestion is particularly acute in urban areas in which the possibilities for the physical increase of capacities are limited or nonexistent. Traffic congestion has a direct impact on the emission, energy efficiency and fuel consumption of personal vehicles. Several projects in the European Union are focused on solving this problem (both at the physical level – automotive industry, as well as at the traffic management level). This paper explores the possibility of the implementation of advanced traffic control systems in urban areas in which driving behavior involves a multitude of stopand-go actions, lower speeds in lower vehicle gears. Since this type of driving behavior affects vehicle fuel consumption and emission, relevant evaluation parameters were defined (queue length, average vehicle speed, etc.). A demonstration corridor in the city of Zagreb was chosen and a simulation model based on the traffic data collected in real traffic situations developed. The basis for further research is laid down to allow the application of the proposed model and adaptive traffic control algorithms to the greater urban traffic network.

2014 ◽  
Vol 624 ◽  
pp. 520-523
Author(s):  
Dan Ping Wang ◽  
Kun Yuan Hu

With the rapid development of economics and technology; the number of vehicles has largely increased. In this paper, traffic guidance and traffic control systems were researched as well as the Internet of Things (IOT). The author tried to combine these three parts to send traffic data to road users so as to let them choose the best route to travel. Meanwhile, traffic network optimization has been realized to reduce traffic congestion areas. This paper has optimized regional traffic signal control systems based on IOT, traffic guidance as well as traffic assignment, involved data sources, IOT design patterns, data collection as well as the relationship between guidance obeisance rate and traffic jam. It also involved the definition of ideal traffic shortest routes, planning and designing of traffic control systems. Results and researches could hope to combine with reality in order to reduce traffic congestion.


2015 ◽  
Vol 27 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Miroslav Vujić ◽  
Sadko Mandzuka ◽  
Martin Greguric

The problem with traffic congestion is particularly expressed in urban areas where possibilities for physical increment of capacity are limited or impossible. Significant in the approach to solving this problem is the usage of Public Transport (PT) and the implementation of various advanced control measures that can improve the quality of overall public transport system. The main objective of this research is to explore the possibilities of implementation of adaptive traffic control on signalized intersections giving priority to public transport vehicles through urban traffic network in the city of Zagreb. The possibilities of implementing public transport priority (PTP) technique in the city of Zagreb are analyzed because of specific traffic situations on defined corridors (location of stops, distance between intersections, etc.). With proper usage of PTP techniques (e.g. adequate detector positions, good estimation of PT vehicle arrival time at intersection) the total tram travel time can be significantly reduced. The Level of Service at intersection may be approximately retained because cross-street traffic demand was not ignored. According to technological level of traffic control system in the city of Zagreb, global implementation of PTP is not possible. So, for each intersection the PTP algorithm was developed separately, but mutual traffic influence of all intersections on the corridor was considered. The cooperative concept application within urban traffic control is considered as well.


1998 ◽  
Vol 1634 (1) ◽  
pp. 118-122 ◽  
Author(s):  
David Bretherton ◽  
Keith Wood ◽  
Neil Raha

The SCOOT Urban Traffic Control system is now operating in over 170 cities worldwide, including 7 systems in North America. Since the first system was installed, there has been a continuous program of research and development to provide new facilities to meet the requirement of the traffic manager. The latest version of SCOOT (Version 3.1) incorporates a traffic information database, ASTRID, and an incident-detection system, INGRID, and provides a number of facilities for congestion control. The traffic monitoring facilities of SCOOT, including a new facility to estimate emissions from vehicles, and the current program of work to enhance the incident-detection system and to provide additional facilities to manage incidents and congestion are reported in this paper. The work is being carried out as part of the European Union, DGXIII 4th Framework project, COSMOS, with additional funding from the UK Department of Transport. The enhanced system is to be installed in the Kingston Borough of London, where it will be tested in combination with congestion warning information provided by variable message signs.


Author(s):  
Isaac Oyeyemi Olayode ◽  
Alessandro Severino ◽  
Tiziana Campisi ◽  
Lagouge Kwanda Tartibu

In the last decades, the Italian road transport system has been characterized by severe and consistent traffic congestion and in particular Rome is one of the Italian cities most affected by this problem. In this study, a LevenbergMarquardt (LM) artificial neural network heuristic model was used to predict the traffic flow of non-autonomous vehicles. Traffic datasets were collected using both inductive loop detectors and video cameras as acquisition systems and selecting some parameters including vehicle speed, time of day, traffic volume and number of vehicles. The model showed a training, test and regression value (R2) of 0.99892, 0.99615 and 0.99714 respectively. The results of this research add to the growing body of literature on traffic flow modelling and help urban planners and traffic managers in terms of the traffic control and the provision of convenient travel routes for pedestrians and motorists.


2011 ◽  
Vol 308-310 ◽  
pp. 1582-1585
Author(s):  
Yi Sheng Huang ◽  
Tso Hsien Liao

Statechart has been utilized as a visual formalism for the modeling of complex systems. It illuminates the features on describing properties of causality, concurrency and synchronization. The reachability structure is used to represented dynamic model by a Boolean function. In this paper, we try to describe State invariant method and equation function for hierarchical tree diagram. Finally, we used them to analyze the urban traffic control systems which are modeled by using Statecharts. Their formalism provides a concept of propositional logic for presenting control strategy.


2015 ◽  
Vol 27 (6) ◽  
pp. 477-484 ◽  
Author(s):  
Florin Nemtanu ◽  
Ilona Madalina Costea ◽  
Catalin Dumitrescu

The paper is focused on the Fourier transform application in urban traffic analysis and the use of said transform in traffic decomposition. The traffic function is defined as traffic flow generated by different categories of traffic participants. A Fourier analysis was elaborated in terms of identifying the main traffic function components, called traffic sub-functions. This paper presents the results of the method being applied in a real case situation, that is, an intersection in the city of Bucharest where the effect of a bus line was analysed. The analysis was done using different time scales, while three different traffic functions were defined to demonstrate the theoretical effect of the proposed method of analysis. An extension of the method is proposed to be applied in urban areas, especially in the areas covered by predictive traffic control.


2020 ◽  
Vol 5 (3-4) ◽  
pp. 173-186
Author(s):  
Matthias Werra ◽  
Axel Sturm ◽  
Ferit Küçükay

Abstract This paper presents a virtual toolchain for the optimal concept and prototype dimensioning of 48 V hybrid drivetrains. First, this toolchain is used to dimension the drivetrain components for a 48 V P0+P4 hybrid which combines an electric machine in the belt drive of the internal combustion engine and a second electric machine at the rear axle. On an optimal concept level, the power and gear ratios of the electric components in the 48 V system are defined for the best fuel consumption and performance. In the second step, the optimal P0+P4 drivetrain is simulated with a prototype model using a realistic rule-based operating strategy to determine realistic behavior in legal cycles and customer operation. The optimal variant shows a fuel consumption reduction in the Worldwide harmonized Light Duty Test Cycle of 13.6 % compared to a conventional vehicle whereas the prototype simulation shows a relatively higher savings potential of 14.8 %. In the prototype simulation for customer operation, the 48 V hybrid drivetrain reduces the fuel consumption by up to 24.6 % in urban areas due to a high amount of launching and braking events. Extra-urban and highway areas show fuel reductions up to 11.6 % and 4.2 %, respectively due to higher vehicle speed and power requirements. The presented virtual toolchain can be used to combine optimal concept dimensioning with close to reality behaviour simulations to maximise realistic statements and minimize time effort.


1990 ◽  
Vol 23 (8) ◽  
pp. 473-476 ◽  
Author(s):  
A. Kessaci ◽  
J.L. Farges ◽  
J.J. Henry

Author(s):  
Glen Weisbrod ◽  
Don Vary ◽  
George Treyz

Key findings are provided from NCHRP Study 2-21, which examined how urban traffic congestion imposes economic costs within metropolitan areas. Specifically, the study applied data from Chicago and Philadelphia to examine how various producers of economic goods and services are sensitive to congestion, through its impact on business costs, productivity, and output levels. The data analysis showed that sensitivity to traffic congestion varies by industry sector and is attributable to differences in each industry sector's mix of required inputs and hence its reliance on access to skilled labor, access to specialized inputs, and access to a large, transportation-based market area. Statistical analysis models were applied with the local data to demonstrate how congestion effectively shrinks business market areas and reduces the "agglomeration economies" of businesses operating in large urban areas, thus raising production costs. Overall, this research illustrates how it is possible to estimate the economic implications of congestion, an approach that may be applied in the future for benefit-cost analysis of urban congestion-reduction strategies or for development of congestion pricing strategies. The analysis also shows how congestion-reduction strategies can induce additional traffic as a result of economic benefits.


Sign in / Sign up

Export Citation Format

Share Document