scholarly journals Finite element analysis of the effective properties of corundum-containing piezoceramics with multiscale pores

2020 ◽  
Vol 13 (1) ◽  
pp. 44-59
Author(s):  
A.B. Kudimova ◽  
A.V. Nasedkin
Aerospace ◽  
2005 ◽  
Author(s):  
Vinod P. Veedu ◽  
Davood Askari ◽  
Mehrdad N. Ghasemi-Nejhad

The objective of this paper is to develop constitutive models to predict thermoelastic properties of carbon single-walled nanotubes using analytical, asymptotic homogenization, and numerical, finite element analysis, methods. In our approach, the graphene sheet is considered as a non-homogeneous network shell layer which has zero material properties in the regions of perforation and whose effective properties are estimated from the solution of the appropriate local problems set on the unit cell of the layer. Our goal is to derive working formulas for the entire complex of the thermoelastic properties of the periodic network. The effective thermoelastic properties of carbon nanotubes were predicted using asymptotic homogenization method. Moreover, in order to verify the results of analytical predictions, a detailed finite element analysis is followed to investigate the thermoelastic response of the unit cells and the entire graphene sheet network.


Author(s):  
Phillip Deierling ◽  
Olesya I. Zhupanska ◽  
Crystal Pasiliao

The present paper is specifically concerned with the evaluation of the effective temperature-dependent elastic, thermal and thermo-elastic material properties of artificially graded Ti-TiB2 microstructures (through thickness only). Effective properties of Ti-TiB2 composite are obtained using micromechanics models and finite element analysis of representative volume elements (RVEs). Two approaches have been adopted and compared to determine the proper RVE. In a fashion similar to previous studies [1], RVEs are generated by considering regions that have a uniform to slow variation in material composition (i.e., constant volume fraction), resulting in statistically homogenous piece-wise RVEs of the graded microstructure neglecting interaction from neighboring cells. In the second approach, continuous RVEs are generated by considering the entire FGM. As pointed out by Anthoine [2], modeling of the complete variation in a microstructure may influence the surrounding layers due to the interactions of varying material composition, particularly when there is a steep variation in material composition along the grading direction. To determine these effects of interlayer interactions, FGM microstructures were generated using three different types of material grading functions, linear, quadratic and square root, providing uniform, gradual and steep variations, respectively. Finite element analysis was performed to determine effective properties of the composite over a wide temperature range.


Author(s):  
Dongsheng Li ◽  
Xin Sun ◽  
Mohammed A. Khaleel

A microstructure-based finite element analysis model was developed to predict the effective elastic property of cellulose nanowhisker reinforced all-cellulose composite. Analysis was based on the microstructure synthesized with assumption on volume fraction, size, and orientation distribution of cellulose nanowhiskers. Simulation results demonstrated some interesting discovery: With the increase of aspect ratio, the effective elastic modulus increases in isotropic microstructure. The elastic property anisotropy increases with the aspect ratio and anisotropy of nanowhisker orientation. Simulation results from microstructure-based finite element analysis agree well with experimental results, comparing with other homogenization methods: upper bound, lower bound, and self-consistent models. Capturing the anisotropic elastic property, the microstructure-based finite element analysis demonstrated the capability in guiding materials design to improve effective properties.


2021 ◽  
Vol 144 (4) ◽  
Author(s):  
Vysakh Venugopal ◽  
Matthew McConaha ◽  
Sam Anand

Abstract The design of multimaterial lattice structures with optimized elasticity tensor, coefficient of thermal expansion (CTE), and thermal conductivity is the main objective of the research presented in this article. In addition, the additive manufacturability of the lattice structure is addressed using a prismatic density filter to eliminate support structures, and an octant symmetry filter is used to design symmetric lattices. A density-based topology optimization model is formulated with a homogenization method and solved using a sequential linear programming method to obtain the desired unit cell geometry of the lattice structure. The optimized unit cell obtained has high mechanical stiffness, a low CTE, and low thermal conductivity. A finite element analysis is carried out on the optimized lattice structure and an equivalent cube of computed effective properties (with the same loading and boundary conditions) to validate the computed homogenized material properties. The results from the finite element analysis show that the methodology followed to generate the lattice structure is accurate. Such lattice structures with tailored material properties can be used in aerospace parts that are subjected to mechanical and thermal loads. The complex multimaterial geometry produced from the topology optimization routine presented here is intended explicitly for the manufacture of parts using the directed energy deposition process with multiple material deposition nozzles.


Sign in / Sign up

Export Citation Format

Share Document