Integration of Design for Additive Manufacturing Constraints With Multimaterial Topology Optimization of Lattice Structures for Optimized Thermal and Mechanical Properties

2021 ◽  
Vol 144 (4) ◽  
Author(s):  
Vysakh Venugopal ◽  
Matthew McConaha ◽  
Sam Anand

Abstract The design of multimaterial lattice structures with optimized elasticity tensor, coefficient of thermal expansion (CTE), and thermal conductivity is the main objective of the research presented in this article. In addition, the additive manufacturability of the lattice structure is addressed using a prismatic density filter to eliminate support structures, and an octant symmetry filter is used to design symmetric lattices. A density-based topology optimization model is formulated with a homogenization method and solved using a sequential linear programming method to obtain the desired unit cell geometry of the lattice structure. The optimized unit cell obtained has high mechanical stiffness, a low CTE, and low thermal conductivity. A finite element analysis is carried out on the optimized lattice structure and an equivalent cube of computed effective properties (with the same loading and boundary conditions) to validate the computed homogenized material properties. The results from the finite element analysis show that the methodology followed to generate the lattice structure is accurate. Such lattice structures with tailored material properties can be used in aerospace parts that are subjected to mechanical and thermal loads. The complex multimaterial geometry produced from the topology optimization routine presented here is intended explicitly for the manufacture of parts using the directed energy deposition process with multiple material deposition nozzles.

Biomimetics ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 44 ◽  
Author(s):  
Nikolaos Kladovasilakis ◽  
Konstantinos Tsongas ◽  
Dimitrios Tzetzis

The topology optimization (TO) process has the objective to structurally optimize products in various industries, such as in biomechanical engineering. Additive manufacturing facilitates this procedure and enables the utility of advanced structures in order to achieve the optimal product design. Currently, orthopedic implants are fabricated from metal or metal alloys with totally solid structure to withstand the applied loads; nevertheless, such a practice reduces the compatibility with human tissues and increases the manufacturing cost as more feedstock material is needed. This article investigates the possibility of applying bioinspired lattice structures (cellular materials) in order to topologically optimize an orthopedic hip implant, made of Inconel 718 superalloy. Lattice structures enable topology optimization of an object by reducing its weight and increasing its porosity without compromising its mechanical behavior. Specifically, three different bioinspired advanced lattice structures were investigated through finite element analysis (FEA) under in vivo loading. Furthermore, the regions with lattice structure were optimized through functional gradation of the cellular material. Results have shown that optimal design of hip implant geometry, in terms of stress behavior, was achieved through functionally graded lattice structures and the hip implant is capable of withstanding up to two times the in vivo loads, suggesting that this design is a suitable and effective replacement for a solid implant.


2007 ◽  
Vol 04 (04) ◽  
pp. 653-670 ◽  
Author(s):  
H. C. JUNG ◽  
S. KRUMDIECK

Laser forming is a flexible sheet metal manufacturing technique capable of producing various shapes, without hard tools and external forces, by irradiation across the surface of the metal piece. A three-dimensional thermal-elasto-plastic (TEP) finite element model for a straight line laser forming process has been developed during the course of this study, which simulates bend angles and temperature distributions. Laser forming process optimization and material sensitivity are investigated. In order to seek the optimal process conditions to generate a desired bend angle in the multi-scan laser bending process, an optimization algorithm based on the approximation of objective function and state variables is integrated into the numerical model. An optimal set of process parameters such as laser power, scan speed, beam diameter and the number of scans are obtained with optimization procedure. In order to assess process sensitivity to material roperties, associations between bend angle and material properties are statistically determined using the Pearson product-moment correlation coefficient via Monte Carlo simulations, for which a large number of the finite element simulations are carried out. The material properties of interest include the coefficient of thermal expansion, thermal conductivity, specific heat, modulus of elasticity, and Poisson's ratio. Results show that the process optimization coupled with finite element analysis can be used to determine processing parameters, and that the material properties of primary importance are the coefficient of thermal expansion, thermal conductivity and specific heat.


Aerospace ◽  
2005 ◽  
Author(s):  
Vinod P. Veedu ◽  
Davood Askari ◽  
Mehrdad N. Ghasemi-Nejhad

The objective of this paper is to develop constitutive models to predict thermoelastic properties of carbon single-walled nanotubes using analytical, asymptotic homogenization, and numerical, finite element analysis, methods. In our approach, the graphene sheet is considered as a non-homogeneous network shell layer which has zero material properties in the regions of perforation and whose effective properties are estimated from the solution of the appropriate local problems set on the unit cell of the layer. Our goal is to derive working formulas for the entire complex of the thermoelastic properties of the periodic network. The effective thermoelastic properties of carbon nanotubes were predicted using asymptotic homogenization method. Moreover, in order to verify the results of analytical predictions, a detailed finite element analysis is followed to investigate the thermoelastic response of the unit cells and the entire graphene sheet network.


Author(s):  
Joonas Ponkala ◽  
Mohsin Rizwan ◽  
Panos S. Shiakolas

The current state of the art in coronary stent technology, tubular structures used to keep the lumen open, is mainly populated by metallic stents coated with certain drugs to increase biocompatibility, even though experimental biodegradable stents have appeared in the horizon. Biodegradable polymeric stent design necessitates accurate characterization of time dependent polymer material properties and mechanical behavior for analysis and optimization. This manuscript presents the process for evaluating material properties for biodegradable biocompatible polymeric composite poly(diol citrate) hydroxyapatite (POC-HA), approaches for identifying material models and three dimensional solid models for finite element analysis and fabrication of a stent. The developed material models were utilized in a nonlinear finite element analysis to evaluate the suitability of the POC-HA material for coronary stent application. In addition, the advantages of using femtosecond laser machining to fabricate the POC-HA stent are discussed showing a machined stent. The methodology presented with additional steps can be applied in the development of a biocompatible and biodegradable polymeric stents.


Sign in / Sign up

Export Citation Format

Share Document