micromechanics models
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 272-280
Author(s):  
Mahadeva Raju G. K ◽  
◽  
G. M Madhu ◽  
P Dinesh Sankar Reddy ◽  
Karthik K V ◽  
...  

Polymer nano composites using CuO as filler material and epoxy as matrix materials were prepared with different concentrations of CuO nano particles (1-5 wt%) by shear mixing followed by ultra-sonication process. The mechanical properties such as compressive strength and modulus were characterized using ASTM standards. It was found that the addition of CuO nano particles both compressive strength and modulus increased. As the CuO content increased in epoxy matrix the moduli values found to increase and were further analyzed using micromechanical models. The analytical models discussed correlate well with experimental values. The models discussed include Nicolais – Narkis, Turcsanyi, Piggot – Leidner and Nielsen models for the tensile strength values and for tensile modulus the models discussed include Halpin Tsai, Kerner and Sato – Furukawa models. These micromechanics models predict stiffness of nanocomposites with both aligned and randomly oriented fillers. XRD pattern revealed the interaction between CuO nanoparticles and epoxy matrix. The thermal decomposition behaviour revealed that there is an enhancement of onset of decomposition temperature by 28oC for 5wt% CuO filled epoxy than that of pure epoxy


2021 ◽  
Vol 11 (14) ◽  
pp. 6521
Author(s):  
Abdur Rahim ◽  
Abdalrhman Milad ◽  
Nur Izzi Md Yusoff ◽  
Gordon Airey ◽  
Nick Thom

The aggregate in an asphalt mixture is coated with mastic consisting of bitumen (dilute phase) and filler (particulates phase). The interaction of bitumen and filler and packing of filler plays an important role in the properties of mastics. The micromechanics models from composite rheology can be used to predict the stiffening effect of a suspension. In this research, the stiffening effect of fillers was investigated based on the rheology of mastic. The frequency sweep tests in a dynamic shear rheometer at different temperatures were performed within a linear viscoelastic range to construct the master curves. The volume fractions were expressed as compositional volumes of filler in mastic. The particle shape and surface texture are determined through microscopy. We used six micromechanics-based models to predict the stiffening potential of fillers in mastics. The models include Maron–Pierce, Lewis Nielsen, Mooney, Krieger–Dougherty, Chong, Robinson, and Hashin Models. The results show that the same volume content of filler has a different effective volume. The fillers increase the stiffening effect of the composite, especially at high temperatures. The behaviour of fillers with similar effective volume and packing is identical. The filler type affects the stiffening of mastics. Micromechanics modelling results show that most models show an accurate stiffening effect at lower concentrations with the exception of the Chong Model. The Maron–Pierce Model under-estimates the stiffening potential for granite mastic at higher concentrations beyond the 30% filler content fraction. The value of maximum packing fraction (ϕm) and Einstien coefficient (KE) in the Mooney model are significantly different from other models for limestone and granite, respectively. The line of equality graph shows good agreement of measured and predicted stiffness. It is difficult to precisely model the mastic data with any single model due to the presence of complex stiffening effects beyond volume filling.


2020 ◽  
Vol 244 ◽  
pp. 112229 ◽  
Author(s):  
Jian Zhao ◽  
Dong-Xiao Su ◽  
Jin-ming Yi ◽  
Gengdong Cheng ◽  
Lih-Sheng Turng ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Guannan Wang ◽  
Qiang Chen ◽  
Mengyuan Gao ◽  
Bo Yang ◽  
David Hui

AbstractThe locally-exact homogenization theory is further extended to investigate the homogenized and localized electric behavior of unidirectional composite and porous materials. Distinct from the classical and numerical micromechanics models, the present technique is advantageous by developing exact analytical solutions of repeating unit cells (RUC) with hexagonal and rhomboid geometries that satisfy the internal governing equations and fiber/matrix interfacial continuities in a point-wise manner. A balanced variational principle is proposed to impose the periodic boundary conditions on mirror faces of an RUC, ensuring rapid convergence of homogenized and localized responses. The present simulations are validated against the generalized Eshelby solution with electric capability and the finite-volume direct averaging micromechanics, where excellent agreements are obtained. Several micromechanical parameters are then tested of their effects on the responses of composites, such as the fiber/matrix ratio and RUC geometry. The efficiency of the theory is also proved and only a few seconds are required to generate a full set of properties and concomitant local electric fields in an uncompiled MATLAB environment. Finally, the related programs may be encapsulated with an input/output (I/O) interface such that even non-professionals can execute the programs without learning the mathematical details.


Author(s):  
C. Mahesh ◽  
K. Govindarajulu ◽  
V. Balakrishna Murthy

In this work, applicability of homogenization approach is verified with the micromechanics approach by considering wavy orthotropic fiber composite. Thermal conductivities of [Formula: see text]-300 orthotropic wavy fiber composite are determined for micromechanical model and compared with the results obtained by two stage homogenized model over volume fraction ranging from 0.1 to 0.6. Also, a methodology is suggested for reducing percentage deviation between homogenization and micromechanical approaches. Effect of debond on the thermal conductivities of wavy orthotrophic fiber composite is studied and compared with perfectly aligned fiber composite for different volume fraction. It is observed that results obtained by the homogenization approach are in good agreement with the results obtained through micromechanics approach. Maximum percentage deviation between homogenized and micromechanics models is 2.13%.


Author(s):  
Matthew E. Riley ◽  
Justin Pettingill

This work will demonstrate the development and experimental validation of the stochastic models to predict the composite material’s mechanical and electromagnetic response as a function of the constituent reinforcing materials. First, stochastic micromechanics models will be developed for the case of multiple disparate supporting materials. These micromechanics models will then be validated against traditional finite element models and experimental results over the feasible parameter space. The developed models will then be utilized to define the optimal geometry of the composite flywheel including constraints such as displacement, stress, flux, magnetic field density, and manufacturability.


2018 ◽  
Vol 24 (11) ◽  
pp. 8826-8830
Author(s):  
Chee Kuang Kok ◽  
Kuan Teng Loon ◽  
Ervina Efzan Mohd Noor ◽  
Chin Chin Ooi

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1919 ◽  
Author(s):  
Yanchao Wang ◽  
ZhengMing Huang

Elasto-plastic models for composites can be classified into three categories in terms of a length scale, i.e., macro scale, meso scale, and micro scale (micromechanics) models. In general, a so-called multi-scale model is a combination of those at various length scales with a micromechanics one as the foundation. In this paper, a critical review is made for the elastoplastic models at the micro scale, and a comparative study is carried out on most popular analytical micromechanics models for the elastoplastic behavior of long fibrous composites subjected to a static load, meaning that creep and dynamic response are not concerned. Each model has been developed essentially following three steps, i.e., an elastic homogenization, a rule to define the yielding of a constituent phase, and a linearization for the elastoplastic response. The comparison is made for all of the three aspects. Effects of other issues, such as the stress field fluctuation induced by a high contrast heterogeneity, the stress concentration factors in the matrix, and the different approaches to a plastic Eshelby tensor, are addressed as well. Correlation of the predictions by different models with available experimental data is shown.


Sign in / Sign up

Export Citation Format

Share Document