scholarly journals Modernisation of Electric Equipment of Combined Cycle Units for Adaption to New Electricity Market Requirements

2020 ◽  
Author(s):  
◽  
Romāns Oļekšijs

Change of market principles and European Union environmental targets leads to more cycling operations of combined cycle units, which used to operate in baseload regime. Due to generation imbalanced allocation, which mainly provoked by intermitting generation, power network becomes less stable. As a result, new requirements for generator connection in Europe were developed, challenging existing power plants to fulfill them. All this leads to higher operational costs of combined heat and power plants and solutions must be found to reduce costs and/or increase revenue. Cycling operation negative impact on power plant thermal equipment is well studied. This Doctoral Thesis reviews the cycling operation impact on combined heat and power plant main electrical equipment and provides empirical formulas to evaluate reliability for different operation scenarios. Solutions for power plant modernisations to fulfill new requirements and provide ancillary services are analyzed. Possible costs of ancillary service provision from combined heat and power plants as well as sites connected to transmission system are evaluated, providing information for further calculations. Detailed methodology of solar generated energy applicability for self-consumption needs was developed, which allows to choose the right power of installation to make the fastest payback time. A battery storage optimization methodology was developed to reduce self-consumption costs of power plant interacting with the solar generation or operating separately. The methodology for combined heat and power plant operation planning enhancement was developed, which use gain from ancillary service provision to move startup’s back in time or shutdowns further in future to provide highest revenue. Methodology also allows to use additional profit to grant lowest number of startup’s per year. Results of both approaches are used to make incident rate calculations by developed empirical formulas, which allow to choose optimal strategy for power plant operation. Obtained formulas can be easily used for most combined heat and power plants. Developed methodologies can be used to optimize the self-consumption of any applications. Methodology for power plant operation planning enhancement is applicable to various scenarios. All developed methodologies were tested on historical data. The results of analysis of ancillary service provision remuneration impact on combined heat and power plant main electrical equipment incident rate and possible income should lead to new researches in this area.

1992 ◽  
Vol 112 (5) ◽  
pp. 46-56 ◽  
Author(s):  
Izu Fukushima ◽  
Shiro Hino ◽  
Masahi Nakamoto ◽  
Shigeru Takamiya

1991 ◽  
Vol 111 (10) ◽  
pp. 1057-1064
Author(s):  
Izumi Fukushima ◽  
Shirou Hino ◽  
Masashi Nakamoto ◽  
Shigeru Takamiya

2014 ◽  
Vol 14 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Alona Bolonina ◽  
Genadijs Bolonins ◽  
Dagnija Blumberga

Abstract District heating systems are widely used to supply heat to different groups of heat consumers. The district heating system offers great opportunities for combined heat and power production. In this paper decreasing district heating supply temperature is analysed in the context of combined heat and power plant operation. A mathematical model of a CHP plant is developed using both empirical and theoretical equations. The model is used for analysis of modified CHP plant operation modes with reduced district heating supply temperature. Conclusions on the benefits of new operation modes are introduced.


Author(s):  
Rodney R. Gay

Traditionally optimization has been thought of as a technology to set power plant controllable parameters (i.e. gas turbine power levels, duct burner fuel flows, auxiliary boiler fuel flows or bypass/letdown flows) so as to maximize plant operations. However, there are additional applications of optimizer technology that may be even more beneficial than simply finding the best control settings for current operation. Most smaller, simpler power plants (such as a single gas turbine in combined cycle operation) perceive little need for on-line optimization, but in fact could benefit significantly from the application of optimizer technology. An optimizer must contain a mathematical model of the power plant performance and of the economic revenue and cost streams associated with the plant. This model can be exercised in the “what-if” mode to supply valuable on-line information to the plant operators. The following quantities can be calculated: Target Heat Rate Correction of Current Plant Operation to Guarantee Conditions Current Power Generation Capacity (Availability) Average Cost of a Megawatt Produced Cost of Last Megawatt Cost of Process Steam Produced Cost of Last Pound of Process Steam Heat Rate Increment Due to Load Change Prediction of Future Power Generation Capability (24 Hour Prediction) Prediction of Future Fuel Consumption (24 Hour Prediction) Impact of Equipment Operational Constraints Impact of Maintenance Actions Plant Budget Analysis Comparison of Various Operational Strategies Over Time Evaluation of Plant Upgrades The paper describes examples of optimizer applications other than the on-line computation of control setting that have provided benefit to plant operators. Actual plant data will be used to illustrate the examples.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1900
Author(s):  
Vitor Augusto Machado Jorge ◽  
Pedro Daniel de Cerqueira Gava ◽  
Juan Ramon Belchior de França Silva ◽  
Thais Mancilha ◽  
Waldir Vieira ◽  
...  

Hydroelectric power plants often make use of tunnels to redirect the flow of water to the plant power house. Such tunnels are often flooded and can span considerable distances. Periodical inspections of such tunnels are highly desirable since a tunnel collapse will be catastrophic, disrupting the power plant operation. In many cases, the use of Unmanned Underwater Vehicles (UUVs) equipped with mechanical profiling sonars is a suitable and affordable way to gather data to generate 3D mapping of flooded tunnels. In this paper, we study the resolution of 3D tunnel maps generated by one or more mechanical profiling sonars working in tandem, considering synchronization and occlusion problems. The article derives the analytical equations to estimate the sampling of the underwater tunnels using mechanical profiling sonars (scanning sonars). Experiments in a simulated environment using up to four sensors simultaneously are presented. We also report experimental results obtained by a UUV inside a large power plant tunnel, together with a first map of this environment using a single sonar sensor.


Sign in / Sign up

Export Citation Format

Share Document