scholarly journals Peer Review #2 of "Characterization of the complete chloroplast genomes of five Populus species from the western Sichuan plateau, southwest China: comparative and phylogenetic analyses (v0.1)"

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6386 ◽  
Author(s):  
Dan Zong ◽  
Anpei Zhou ◽  
Yao Zhang ◽  
Xinlian Zou ◽  
Dan Li ◽  
...  

Species of the genus Populus, which is widely distributed in the northern hemisphere from subtropical to boreal forests, are among the most commercially exploited groups of forest trees. In this study, the complete chloroplast genomes of five Populus species (Populus cathayana, P. kangdingensis, P. pseudoglauca, P. schneideri, and P. xiangchengensis) were compared. The chloroplast genomes of the five Populus species are very similar. The total chloroplast genome sequence lengths for the five plastomes were 156,789, 156,523, 156,512, 156,513, and 156,465 bp, respectively. A total of 130 genes were identified in each genome, including 85 protein-coding genes, 37 tRNA genes and eight rRNA genes. Seven genes were duplicated in the protein-coding genes, whereas 11 genes were duplicated in the RNA genes. The GC content was 36.7% for all plastomes. We analyzed nucleotide substitutions, small inversions, simple sequence repeats and long repeats in the chloroplast genomes and found nine divergence hotspots (ccsA+ccsA-ndhD, ndhC-trnV, psbZ-trnfM, trnG-atpA, trnL-ndhJ, trnR-trnN, ycf4-cemA, ycf1, and trnR-trnN), which could be useful molecular genetic markers for future population genetic and phylogenetic studies. We also observed that two genes (rpoC2 and rbcL) were subject to positive selection. Phylogenetic analysis based on whole cp genomes showed that P. schneideri had a close relationship with P. kangdingensis and P. pseudoglauca, while P. xiangchengensis was a sister to P. cathayana.


2018 ◽  
Vol 41 (3) ◽  
pp. 305-316 ◽  
Author(s):  
Sung-Il Lee ◽  
Kabwe Nkongolo ◽  
Doori Park ◽  
Ik-Young Choi ◽  
Ah-Young Choi ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 749
Author(s):  
Gülbahar Abaramak ◽  
Jaime Ricardo Porras-Domínguez ◽  
Henry Christopher Janse van Rensburg ◽  
Eveline Lescrinier ◽  
Ebru Toksoy Öner ◽  
...  

Fructans are fructose-based (poly)saccharides with inulin and levan being the best-known ones. Thanks to their health-related benefits, inulin-type fructans have been under the focus of scientific and industrial communities, though mostly represented by plant-based inulins, and rarely by microbial ones. Recently, it was discovered that some extremely halophilic Archaea are also able to synthesize fructans. Here, we describe the first in-depth functional and molecular characterization of an Archaeal inulosucrase from Halomicrobium sp. IBSBa (HmcIsc). The HmcIsc enzyme was recombinantly expressed and purified in Escherichia coli and shown to synthesize inulin as proven by nuclear magnetic resonance (NMR) analysis. In accordance with the halophilic lifestyle of its native host, the enzyme showed maximum activity at very high NaCl concentrations (3.5 M), with specific adaptations for that purpose. Phylogenetic analyses suggested that Archaeal inulosucrases have been acquired from halophilic bacilli through horizontal gene transfer, with a HX(H/F)T motif evolving further into a HXHT motif, together with a unique D residue creating the onset of a specific alternative acceptor binding groove. This work uncovers a novel area in fructan research, highlighting unexplored aspects of life in hypersaline habitats, and raising questions about the general physiological relevance of inulosucrases and their products in nature.


2021 ◽  
Vol 22 (4) ◽  
pp. 2104
Author(s):  
Pedro Robles ◽  
Víctor Quesada

Eleven published articles (4 reviews, 7 research papers) are collected in the Special Issue entitled “Organelle Genetics in Plants.” This selection of papers covers a wide range of topics related to chloroplasts and plant mitochondria research: (i) organellar gene expression (OGE) and, more specifically, chloroplast RNA editing in soybean, mitochondria RNA editing, and intron splicing in soybean during nodulation, as well as the study of the roles of transcriptional and posttranscriptional regulation of OGE in plant adaptation to environmental stress; (ii) analysis of the nuclear integrants of mitochondrial DNA (NUMTs) or plastid DNA (NUPTs); (iii) sequencing and characterization of mitochondrial and chloroplast genomes; (iv) recent advances in plastid genome engineering. Here we summarize the main findings of these works, which represent the latest research on the genetics, genomics, and biotechnology of chloroplasts and mitochondria.


Sign in / Sign up

Export Citation Format

Share Document