scholarly journals Characterization of the complete chloroplast genomes of five Populus species from the western Sichuan plateau, southwest China: comparative and phylogenetic analyses

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6386 ◽  
Author(s):  
Dan Zong ◽  
Anpei Zhou ◽  
Yao Zhang ◽  
Xinlian Zou ◽  
Dan Li ◽  
...  

Species of the genus Populus, which is widely distributed in the northern hemisphere from subtropical to boreal forests, are among the most commercially exploited groups of forest trees. In this study, the complete chloroplast genomes of five Populus species (Populus cathayana, P. kangdingensis, P. pseudoglauca, P. schneideri, and P. xiangchengensis) were compared. The chloroplast genomes of the five Populus species are very similar. The total chloroplast genome sequence lengths for the five plastomes were 156,789, 156,523, 156,512, 156,513, and 156,465 bp, respectively. A total of 130 genes were identified in each genome, including 85 protein-coding genes, 37 tRNA genes and eight rRNA genes. Seven genes were duplicated in the protein-coding genes, whereas 11 genes were duplicated in the RNA genes. The GC content was 36.7% for all plastomes. We analyzed nucleotide substitutions, small inversions, simple sequence repeats and long repeats in the chloroplast genomes and found nine divergence hotspots (ccsA+ccsA-ndhD, ndhC-trnV, psbZ-trnfM, trnG-atpA, trnL-ndhJ, trnR-trnN, ycf4-cemA, ycf1, and trnR-trnN), which could be useful molecular genetic markers for future population genetic and phylogenetic studies. We also observed that two genes (rpoC2 and rbcL) were subject to positive selection. Phylogenetic analysis based on whole cp genomes showed that P. schneideri had a close relationship with P. kangdingensis and P. pseudoglauca, while P. xiangchengensis was a sister to P. cathayana.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8450 ◽  
Author(s):  
Sunan Huang ◽  
Xuejun Ge ◽  
Asunción Cano ◽  
Betty Gaby Millán Salazar ◽  
Yunfei Deng

The genus Dicliptera (Justicieae, Acanthaceae) consists of approximately 150 species distributed throughout the tropical and subtropical regions of the world. Newly obtained chloroplast genomes (cp genomes) are reported for five species of Dilciptera (D. acuminata, D. peruviana, D. montana, D. ruiziana and D. mucronata) in this study. These cp genomes have circular structures of 150,689–150,811 bp and exhibit quadripartite organizations made up of a large single copy region (LSC, 82,796–82,919 bp), a small single copy region (SSC, 17,084–17,092 bp), and a pair of inverted repeat regions (IRs, 25,401–25,408 bp). Guanine-Cytosine (GC) content makes up 37.9%–38.0% of the total content. The complete cp genomes contain 114 unique genes, including 80 protein-coding genes, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. Comparative analyses of nucleotide variability (Pi) reveal the five most variable regions (trnY-GUA-trnE-UUC, trnG-GCC, psbZ-trnG-GCC, petN-psbM, and rps4-trnL-UUA), which may be used as molecular markers in future taxonomic identification and phylogenetic analyses of Dicliptera. A total of 55-58 simple sequence repeats (SSRs) and 229 long repeats were identified in the cp genomes of the five Dicliptera species. Phylogenetic analysis identified a close relationship between D. ruiziana and D. montana, followed by D. acuminata, D. peruviana, and D. mucronata. Evolutionary analysis of orthologous protein-coding genes within the family Acanthaceae revealed only one gene, ycf15, to be under positive selection, which may contribute to future studies of its adaptive evolution. The completed genomes are useful for future research on species identification, phylogenetic relationships, and the adaptive evolution of the Dicliptera species.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2137 ◽  
Author(s):  
Xiang-Xiao Meng ◽  
Yan-Fang Xian ◽  
Li Xiang ◽  
Dong Zhang ◽  
Yu-Hua Shi ◽  
...  

The genus Sanguisorba, which contains about 30 species around the world and seven species in China, is the source of the medicinal plant Sanguisorba officinalis, which is commonly used as a hemostatic agent as well as to treat burns and scalds. Here we report the complete chloroplast (cp) genome sequences of four Sanguisorba species (S. officinalis, S. filiformis, S. stipulata, and S. tenuifolia var. alba). These four Sanguisorba cp genomes exhibit typical quadripartite and circular structures, and are 154,282 to 155,479 bp in length, consisting of large single-copy regions (LSC; 84,405–85,557 bp), small single-copy regions (SSC; 18,550–18,768 bp), and a pair of inverted repeats (IRs; 25,576–25,615 bp). The average GC content was ~37.24%. The four Sanguisorba cp genomes harbored 112 different genes arranged in the same order; these identical sections include 78 protein-coding genes, 30 tRNA genes, and four rRNA genes, if duplicated genes in IR regions are counted only once. A total of 39–53 long repeats and 79–91 simple sequence repeats (SSRs) were identified in the four Sanguisorba cp genomes, which provides opportunities for future studies of the population genetics of Sanguisorba medicinal plants. A phylogenetic analysis using the maximum parsimony (MP) method strongly supports a close relationship between S. officinalis and S. tenuifolia var. alba, followed by S. stipulata, and finally S. filiformis. The availability of these cp genomes provides valuable genetic information for future studies of Sanguisorba identification and provides insights into the evolution of the genus Sanguisorba.


2018 ◽  
Vol 19 (8) ◽  
pp. 2383 ◽  
Author(s):  
Qixiang Lu ◽  
Wenqing Ye ◽  
Ruisen Lu ◽  
Wuqin Xu ◽  
Yingxiong Qiu

The monocot genus Croomia (Stemonaceae) comprises three herbaceous perennial species that exhibit EA (Eastern Asian)–ENA (Eastern North American) disjunct distribution. However, due to the lack of effective genomic resources, its evolutionary history is still weakly resolved. In the present study, we conducted comparative analysis of the complete chloroplast (cp) genomes of three Croomia species and two Stemona species. These five cp genomes proved highly similar in overall size (154,407–155,261 bp), structure, gene order and content. All five cp genomes contained the same 114 unique genes consisting of 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Gene content, gene order, AT content and IR/SC boundary structures were almost the same among the five Stemonaceae cp genomes, except that the Stemona cp genome was found to contain an inversion in cemA and petA. The lengths of five genomes varied due to contraction/expansion of the IR/SC borders. A/T mononucleotides were the richest Simple Sequence Repeats (SSRs). A total of 46, 48, 47, 61 and 60 repeats were identified in C. japonica, C. heterosepala, C. pauciflora, S. japonica and S. mairei, respectively. A comparison of pairwise sequence divergence values across all introns and intergenic spacers revealed that the ndhF–rpl32, psbM–trnD and trnS–trnG regions are the fastest-evolving regions. These regions are therefore likely to be the best choices for molecular evolutionary and systematic studies at low taxonomic levels in Stemonaceae. Phylogenetic analyses of the complete cp genomes and 78 protein-coding genes strongly supported the monophyly of Croomia. Two Asian species were identified as sisters that likely diverged in the Early Pleistocene (1.62 Mya, 95% HPD: 1.125–2.251 Mya), whereas the divergence of C. pauciflora dated back to the Late Miocene (4.77 Mya, 95% HPD: 3.626–6.162 Mya). The availability of these cp genomes will provide valuable genetic resources for further population genetics and phylogeographic studies on Croomia.


2021 ◽  
Author(s):  
Yingfeng Niu ◽  
Chengwen Gao ◽  
Jin Liu

Abstract BackgroundAmong the Mangifera species, mango (Mangifera indica) is an important commercial fruit crop. However, very few studies have been conducted on the Mangifera mitochondrial genome. This study reports and compares the newly sequenced mitochondrial genomes of three Mangifera species. Results Mangifera mitochondrial genomes showed partial similarities in the overall size, genomic structure, and gene content. Specifically, the genomes are circular and contain about 63-69 predicted functional genes, including five ribosomal RNA (rRNA) genes and 24-27 transfer RNA (tRNA) genes. The GC contents of the Mangifera mitochondrial genomes are similar, ranging from 44.42–44.66%. Leucine (Leu) and serine (Ser) are the most frequently used, while tryptophan (Trp) and cysteine (Cys) are the least used amino acids among the protein-coding genes in Mangifera mitochondrial genomes. We also identified 7-10 large chloroplast genomic fragments in the mitochondrial genome, ranging from 1407-6142 bp. Additionally, four intact mitochondrial tRNAs genes (tRNA-Cys, tRNA-Trp, tRNA-Pro, and tRNA-Met) and intergenic spacer regions were identified. Phylogenetic analysis based on the common protein-coding genes of most branches provided a high support value. ConclusionsWe sequenced and compared the mitochondrial genomes of three Mangifera species. The results showed that the gene content of Mangifera mitochondrial genomes is similar across various species. Gene transferred from the chloroplast genome to the mitochondrial genome were identified. This study provides valuable information for evolutionary and molecular studies of Mangifera and a basis for further studies on genomic breeding of mango.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1116 ◽  
Author(s):  
Xue-Li Zhao ◽  
Zhang-Ming Zhu

Taxonomic and phylogenetic relationships of Christia, Urariopsis, Uraria and related genera within the tribe Desmodieae (Fabaceae: Papilionoideae) have long been controversial. Here, we report the complete chloroplast (cp) genomes of Christia vespertilionis and Urariopsis brevissima and perform comparative and phylogenetic analyses with Uraria lagopodioides and other relatives in the Desmodieae. The cp genomes of C. vespertilionis and U. brevissima are 149,656 and 149,930 bp long, with 128 unique genes (83 protein-coding genes, 37 tRNA genes and 8 rRNA genes), respectively. Comparative analyses revealed 95-129 simple sequence repeats (SSRs) and eleven highly variable regions (trnK-rbcL, rbcL-atpB, ndhJ-trnF, trnL-trnT, psbD-rpoB, accD-cemA, petA-psbL, psbE-petL, rps11-rps19, ndhF-ccsA, and rps15-ycf1) among six Desmodieae species. Phylogenetic analyses clearly resolved two subtribes (Desmodiinae and Lespedezinae) of Desmodieae as monophyletic, and the newly reported C. vespertilionis and U. brevissima clustered in subtribe Desmodiinae. A sister relationship of C. vespertilionis to U. lagopodioides was supported. Evidence was presented to support the treatment of Urariopsis as a distinct genus rather than in synonymy with Uraria. The results provide valuable information for further studies on species delimitation, phylogenetics, population genetics, and the evolutionary process of speciation in the Desmodieae.


2014 ◽  
Vol 35 (3) ◽  
pp. 331-343 ◽  
Author(s):  
Yongmin Li ◽  
Huabin Zhang ◽  
Xiaoyou Wu ◽  
Hui Xue ◽  
Peng Yan ◽  
...  

We determined the complete nucleotide sequence of the mitochondrial genome of Odorrana schmackeri (family Ranidae). The O. schmackeri mitogenome (18 302 bp) contained 13 protein-coding genes, 2 rRNA genes, 21 tRNA genes and a single control region (CR). In the new mitogenome, the distinctive feature is the loss of tRNA-His, which could be explained by a hypothesis of gene substitution. The new sequence data was used to assess the phylogenetic relationships among 23 ranid species mostly from China using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic analyses support two families (Ranidae, Dicroglossidae) for Chinese ranids. In Ranidae, we support the genus Amolops should be retained in the subfamily Raninae rather than in a distinct subfamily Amolopinae of its own. Meanwhile, the monophyly of the genus Odorrana was supported. Within Dicroglossidae, four tribes were well supported including Occidozygini, Dicroglossini, Limnonectini and Paini. More mitochondrial genomes and nuclear genes are required to decisively evaluate phylogenetic relationships of ranids.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 410 ◽  
Author(s):  
Xiaolei Yu ◽  
Wei Tan ◽  
Huanyu Zhang ◽  
Han Gao ◽  
Wenxiu Wang ◽  
...  

Ampelopsis humulifolia (A. humulifolia) and Ampelopsis japonica (A. japonica), which belong to the family Vitaceae, are valuably used as medicinal plants. The chloroplast (cp) genomes have been recognized as a convincing data for marker selection and phylogenetic studies. Therefore, in this study we reported the complete cp genome sequences of two Ampelopsis species. Results showed that the cp genomes of A. humulifolia and A. japonica were 161,724 and 161,430 bp in length, respectively, with 37.3% guanine-cytosine (GC) content. A total of 114 unique genes were identified in each cp genome, comprising 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. We determined 95 and 99 small sequence repeats (SSRs) in A. humulifolia and A. japonica, respectively. The location and distribution of long repeats in the two cp genomes were identified. A highly divergent region of psbZ (Photosystem II reaction center protein Z) -trnG (tRNA-Glycine) was found and could be treated as a potential marker for Vitaceae, and then the corresponding primers were designed. Additionally, phylogenetic analysis showed that Vitis was closer to Tetrastigma than Ampelopsis. In general, this study provides valuable genetic resources for DNA barcoding marker identification and phylogenetic analyses of Ampelopsis.


2020 ◽  
Author(s):  
Ivan M. De-la-Cruz ◽  
Juan Núñéz-Farfán

The annual herb, Datura stramonium, is a member of the Solanaceae family. In this study, we reported two chloroplast and mitochondrial genomes of two Mexican plants of Datura stramonium. Both chloroplast genomes contained 87 protein-coding genes, 157 genes, 7 rRNA genes and 62 tRNA genes. Both chloroplast genomes of D. stramonium had the same genome size (155,884 bp). Likewise, 196 genes, 162 protein coding-sequences and 3 rRNA were annotated for both mitochondrial genomes. The mitochondrion genome size for Ticumán was 330,791 bp and for Teotihuacan was 335, 447 bp.


ZooKeys ◽  
2018 ◽  
Vol 754 ◽  
pp. 127-139 ◽  
Author(s):  
Jun Li ◽  
Rui-Rui Lin ◽  
Yao-Yao Zhang ◽  
Kun-Jie Hu ◽  
Ya-Qi Zhao ◽  
...  

In the present study, the complete mitogenome of Theretrajaponica was sequenced and compared with other sequenced mitogenomes of Sphingidae species. The mitogenome of T.japonica, containing 37 genes (13 protein-coding genes, 22 tRNA genes, and two rRNA genes) and a region rich in adenine and thymine (AT-rich region), is a circular molecule with 15,399 base pairs (bp) in length. The order and orientation of the genes in the mitogenome are similar to those of other sequenced mitogenomes of Sphingidae species. All 13 protein-coding genes (PCGs) are initiated by ATN codons except for the cytochrome C oxidase subunit 1 gene (cox1) which is initiated by the codon CGA as observed in other lepidopteran insects. Cytochrome C oxidase subunit 2 gene (cox2) has the incomplete termination codon T and NADH dehydrogenase subunit 1 gene (nad1) terminates with TAG while the remainder terminates with TAA. Additionally, the codon distributions of the 13 PCGs revealed that Ile and Leu2 are the most frequently used codon families and codons CGG, CGC, CCG, CAG, and AGG are absent. The 431 bp AT-rich region includes the motif ATAGA followed by a 23 bp poly-T stretch, short tandem repeats (STRs) of TC and TA, two copies of a 28 bp repeat ‘ATTAAATTAATAAATTAA TATATTAATA’ and a poly-A element. Phylogenetic analyses within Sphingidae confirmed that T.japonica belongs to the Macroglossinae and showed that the phylogenetic relationship of T.japonica is closer to Ampelophagarubiginosa than Daphnisnerii. Phylogenetic analyses within Theretra demonstrate that T.japonica, T.jugurtha, T.suffusa, and T.capensis are clustered into one clade.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1497
Author(s):  
Cai-Yun Zhang ◽  
Tong-Jian Liu ◽  
Xiao-Lu Mo ◽  
Hui-Run Huang ◽  
Gang Yao ◽  
...  

Pogostemon Desf., the largest genus of the tribe Pogostemoneae (Lamiaceae), consists of ca. 80 species distributed mainly from South and Southeast Asia to China. The genus contains many patchouli plants, which are of great economic importance but taxonomically difficult. Therefore, it is necessary to characterize more chloroplast (cp) genomes for infrageneric phylogeny analyses and species identification of Pogostemon, especially for patchouli plants. In this study, we newly generated four cp genomes for three patchouli plants (i.e., Pogostemon plectranthoides Desf., P. septentrionalis C. Y. Wu et Y. C. Huang, and two cultivars of P. cablin (Blanoco) Benth.). Comparison of all samples (including online available cp genomes of P. yatabeanus (Makino) Press and P. stellatus (Lour.) Kuntze) suggested that Pogostemon cp genomes are highly conserved in terms of genome size and gene content, with a typical quadripartite circle structure. Interspecific divergence of cp genomes has been maintained at a relatively low level, though seven divergence hotspot regions were identified by stepwise window analysis. The nucleotide diversity (Pi) value was correlated significantly with gap proportion (indels), but significantly negative with GC content. Our phylogenetic analyses based on 80 protein-coding genes yielded high-resolution backbone topologies for the Lamiaceae and Pogostemon. For the overall mean substitution rates, the synonymous (dS) and nonsynonymous (dN) substitution rate values of protein-coding genes varied approximately threefold, while the dN values among different functional gene groups showed a wider variation range. Overall, the cp genomes of Pogostemon will be useful for phylogenetic reconstruction, species delimitation and identification in the future.


Sign in / Sign up

Export Citation Format

Share Document