scholarly journals Optimization of 16S amplicon analysis using mock communities: implications for estimating community diversity

Author(s):  
Andrew Krohn ◽  
Bo Stevens ◽  
Adam Robbins-Pianka ◽  
Matthew Belus ◽  
Gerard J Allan ◽  
...  

Diversity of complex microbial communities can be rapidly assessed by community amplicon sequencing of marker genes (e.g., 16S), often yielding many thousands of DNA sequences per sample. However, analysis of community amplicon sequencing data requires multiple computational steps which affect the outcome of a final data set. Here we use mock communities to describe the effects of parameter adjustments for raw sequence quality filtering, picking operational taxonomic units (OTUs), taxonomic assignment, and OTU table filtering as implemented in QIIME 1.9.1. We demonstrate a workflow optimization based upon this exploration which we also apply to environmental samples. We found that quality filtering of raw data and filtering of OTU tables had large effects on observed OTU diversity. While all taxonomy assigners performed with similar accuracy, an appropriate choice of similarity threshold for defining OTUs depended on the method used for OTU picking. Our “default” analysis in QIIME overestimated mock community diversity by at least a factor of ten, compared to the optimized analysis which correctly characterized the taxonomic composition of the mock communities while still overestimating OTU diversity by about a factor of two. Though observed relative abundances of mock community member taxa were approximately correct, most were still represented by multiple OTUs. Low-frequency OTUs conspecific to constituent mock community taxa were characterized by multiple substitution and indel errors and the presence of a low quality base call resulting in sequence truncation during quality filtering. Low quality base calls were observed at “G” positions most of the time, and were also associated with a preceding “TTT” trinucleotide motif. Environmental diversity estimates were reduced by about 40% from 2508 to 1533 OTUs when comparing output from the default and optimized workflows. We attribute this reduction in observed diversity to the removal of erroneous sequences from the data set. Our results indicate that both strict quality filtering of raw sequencing data and careful filtering of raw OTU tables are important steps for accurate estimation of microbial community diversity.

Author(s):  
Andrew Krohn ◽  
Bo Stevens ◽  
Adam Robbins-Pianka ◽  
Matthew Belus ◽  
Gerard J Allan ◽  
...  

Diversity of complex microbial communities can be rapidly assessed by community amplicon sequencing of marker genes (e.g., 16S), often yielding many thousands of DNA sequences per sample. However, analysis of community amplicon sequencing data requires multiple computational steps which affect the outcome of a final data set. Here we use mock communities to describe the effects of parameter adjustments for raw sequence quality filtering, picking operational taxonomic units (OTUs), taxonomic assignment, and OTU table filtering as implemented in QIIME 1.9.1. We demonstrate a workflow optimization based upon this exploration which we also apply to environmental samples. We found that quality filtering of raw data and filtering of OTU tables had large effects on observed OTU diversity. While all taxonomy assigners performed with similar accuracy, an appropriate choice of similarity threshold for defining OTUs depended on the method used for OTU picking. Our “default” analysis in QIIME overestimated mock community diversity by at least a factor of ten, compared to the optimized analysis which correctly characterized the taxonomic composition of the mock communities while still overestimating OTU diversity by about a factor of two. Though observed relative abundances of mock community member taxa were approximately correct, most were still represented by multiple OTUs. Low-frequency OTUs conspecific to constituent mock community taxa were characterized by multiple substitution and indel errors and the presence of a low quality base call resulting in sequence truncation during quality filtering. Low quality base calls were observed at “G” positions most of the time, and were also associated with a preceding “TTT” trinucleotide motif. Environmental diversity estimates were reduced by about 40% from 2508 to 1533 OTUs when comparing output from the default and optimized workflows. We attribute this reduction in observed diversity to the removal of erroneous sequences from the data set. Our results indicate that both strict quality filtering of raw sequencing data and careful filtering of raw OTU tables are important steps for accurate estimation of microbial community diversity.


2016 ◽  
Author(s):  
Andrew Krohn ◽  
Bo Stevens ◽  
Adam Robbins-Pianka ◽  
Matthew Belus ◽  
Gerard J Allan ◽  
...  

The diversity of complex microbial communities can be rapidly assessed by high-throughput DNA sequencing of marker gene (e.g., 16S) PCR amplicon pools, often yielding many thousands of DNA sequences per sample. However, analysis of such community amplicon sequencing data requires multiple computational steps which affect the outcome of a final data set. Here we use mock communities to describe the effects of parameter adjustments for raw sequence quality filtering, picking operational taxonomic units (OTUs), taxonomic assignment, and OTU table filtering as implemented in the popular microbial ecology analysis package, QIIME 1.9.1. We demonstrate a workflow optimization based upon this exploration, which we also apply to environmental samples. We found that quality filtering of raw data and filtering of OTU tables had large effects on observed OTU diversity. While all taxonomy assignment programs performed with similar accuracy, an appropriate choice of similarity threshold for defining OTUs depended on the method used for OTU picking. Our “default” analysis in QIIME overestimated mock community OTU diversity by at least a factor of ten. Our optimized analysis correctly characterized mock community taxonomic composition and improved the OTU diversity estimate, reducing overestimation to a factor of about two. Though observed relative abundances of mock community member taxa were approximately correct, most were still represented by multiple OTUs. Low-frequency OTUs conspecific to constituent mock community taxa were characterized by multiple substitution and indel errors and the presence of a low-quality base call resulting in sequence truncation during quality filtering. Low-quality base calls were observed at “G” positions most of the time, and were also associated with a preceding “TTT” trinucleotide motif. Environmental diversity estimates were reduced by about 40% from 2508 to 1533 OTUs when comparing output from the default and optimized workflows. We attribute this reduction in observed diversity to the removal of erroneous sequences from the data set. Our results indicate that both strict quality filtering of raw sequencing data and careful filtering of raw OTU tables are important steps for accurately estimating microbial community diversity.


Author(s):  
Andrew Krohn ◽  
Bo Stevens ◽  
Adam Robbins-Pianka ◽  
Matthew Belus ◽  
Gerard J Allan ◽  
...  

The diversity of complex microbial communities can be rapidly assessed by high-throughput DNA sequencing of marker gene (e.g., 16S) PCR amplicon pools, often yielding many thousands of DNA sequences per sample. However, analysis of such community amplicon sequencing data requires multiple computational steps which affect the outcome of a final data set. Here we use mock communities to describe the effects of parameter adjustments for raw sequence quality filtering, picking operational taxonomic units (OTUs), taxonomic assignment, and OTU table filtering as implemented in the popular microbial ecology analysis package, QIIME 1.9.1. We demonstrate a workflow optimization based upon this exploration, which we also apply to environmental samples. We found that quality filtering of raw data and filtering of OTU tables had large effects on observed OTU diversity. While all taxonomy assignment programs performed with similar accuracy, an appropriate choice of similarity threshold for defining OTUs depended on the method used for OTU picking. Our “default” analysis in QIIME overestimated mock community OTU diversity by at least a factor of ten. Our optimized analysis correctly characterized mock community taxonomic composition and improved the OTU diversity estimate, reducing overestimation to a factor of about two. Though observed relative abundances of mock community member taxa were approximately correct, most were still represented by multiple OTUs. Low-frequency OTUs conspecific to constituent mock community taxa were characterized by multiple substitution and indel errors and the presence of a low-quality base call resulting in sequence truncation during quality filtering. Low-quality base calls were observed at “G” positions most of the time, and were also associated with a preceding “TTT” trinucleotide motif. Environmental diversity estimates were reduced by about 40% from 2508 to 1533 OTUs when comparing output from the default and optimized workflows. We attribute this reduction in observed diversity to the removal of erroneous sequences from the data set. Our results indicate that both strict quality filtering of raw sequencing data and careful filtering of raw OTU tables are important steps for accurately estimating microbial community diversity.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Marius Welzel ◽  
Anja Lange ◽  
Dominik Heider ◽  
Michael Schwarz ◽  
Bernd Freisleben ◽  
...  

Abstract Background Sequencing of marker genes amplified from environmental samples, known as amplicon sequencing, allows us to resolve some of the hidden diversity and elucidate evolutionary relationships and ecological processes among complex microbial communities. The analysis of large numbers of samples at high sequencing depths generated by high throughput sequencing technologies requires efficient, flexible, and reproducible bioinformatics pipelines. Only a few existing workflows can be run in a user-friendly, scalable, and reproducible manner on different computing devices using an efficient workflow management system. Results We present Natrix, an open-source bioinformatics workflow for preprocessing raw amplicon sequencing data. The workflow contains all analysis steps from quality assessment, read assembly, dereplication, chimera detection, split-sample merging, sequence representative assignment (OTUs or ASVs) to the taxonomic assignment of sequence representatives. The workflow is written using Snakemake, a workflow management engine for developing data analysis workflows. In addition, Conda is used for version control. Thus, Snakemake ensures reproducibility and Conda offers version control of the utilized programs. The encapsulation of rules and their dependencies support hassle-free sharing of rules between workflows and easy adaptation and extension of existing workflows. Natrix is freely available on GitHub (https://github.com/MW55/Natrix) or as a Docker container on DockerHub (https://hub.docker.com/r/mw55/natrix). Conclusion Natrix is a user-friendly and highly extensible workflow for processing Illumina amplicon data.


2016 ◽  
Vol 82 (24) ◽  
pp. 7217-7226 ◽  
Author(s):  
D. Lee Taylor ◽  
William A. Walters ◽  
Niall J. Lennon ◽  
James Bochicchio ◽  
Andrew Krohn ◽  
...  

ABSTRACTWhile high-throughput sequencing methods are revolutionizing fungal ecology, recovering accurate estimates of species richness and abundance has proven elusive. We sought to design internal transcribed spacer (ITS) primers and an Illumina protocol that would maximize coverage of the kingdom Fungi while minimizing nontarget eukaryotes. We inspected alignments of the 5.8S and large subunit (LSU) ribosomal genes and evaluated potential primers using PrimerProspector. We tested the resulting primers using tiered-abundance mock communities and five previously characterized soil samples. We recovered operational taxonomic units (OTUs) belonging to all 8 members in both mock communities, despite DNA abundances spanning 3 orders of magnitude. The expected and observed read counts were strongly correlated (r= 0.94 to 0.97). However, several taxa were consistently over- or underrepresented, likely due to variation in rRNA gene copy numbers. The Illumina data resulted in clustering of soil samples identical to that obtained with Sanger sequence clone library data using different primers. Furthermore, the two methods produced distance matrices with a Mantel correlation of 0.92. Nonfungal sequences comprised less than 0.5% of the soil data set, with most attributable to vascular plants. Our results suggest that high-throughput methods can produce fairly accurate estimates of fungal abundances in complex communities. Further improvements might be achieved through corrections for rRNA copy number and utilization of standardized mock communities.IMPORTANCEFungi play numerous important roles in the environment. Improvements in sequencing methods are providing revolutionary insights into fungal biodiversity, yet accurate estimates of the number of fungal species (i.e., richness) and their relative abundances in an environmental sample (e.g., soil, roots, water, etc.) remain difficult to obtain. We present improved methods for high-throughput Illumina sequencing of the species-diagnostic fungal ribosomal marker gene that improve the accuracy of richness and abundance estimates. The improvements include new PCR primers and library preparation, validation using a known mock community, and bioinformatic parameter tuning.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4925 ◽  
Author(s):  
Jonathan M. Palmer ◽  
Michelle A. Jusino ◽  
Mark T. Banik ◽  
Daniel L. Lindner

High-throughput amplicon sequencing (HTAS) of conserved DNA regions is a powerful technique to characterize microbial communities. Recently, spike-in mock communities have been used to measure accuracy of sequencing platforms and data analysis pipelines. To assess the ability of sequencing platforms and data processing pipelines using fungal internal transcribed spacer (ITS) amplicons, we created two ITS spike-in control mock communities composed of cloned DNA in plasmids: a biological mock community, consisting of ITS sequences from fungal taxa, and a synthetic mock community (SynMock), consisting of non-biological ITS-like sequences. Using these spike-in controls we show that: (1) a non-biological synthetic control (e.g., SynMock) is the best solution for parameterizing bioinformatics pipelines, (2) pre-clustering steps for variable length amplicons are critically important, (3) a major source of bias is attributed to the initial polymerase chain reaction (PCR) and thus HTAS read abundances are typically not representative of starting values. We developed AMPtk, a versatile software solution equipped to deal with variable length amplicons and quality filter HTAS data based on spike-in controls. While we describe herein a non-biological SynMock community for ITS sequences, the concept and AMPtk software can be widely applied to any HTAS dataset to improve data quality.


2020 ◽  
Author(s):  
Marius Welzel ◽  
Anja Lange ◽  
Dominik Heider ◽  
Michael Schwarz ◽  
Bernd Freisleben ◽  
...  

AbstractSequencing of marker genes amplified from environmental samples, known as amplicon sequencing, allows us to resolve some of the hidden diversity and elucidate evolutionary relationships and ecological processes among complex microbial communities. The analysis of large numbers of samples at high sequencing depths generated by high throughput sequencing technologies requires effcient, flexible, and reproducible bioinformatics pipelines. Only a few existing workflows can be run in a user-friendly, scalable, and reproducible manner on different computing devices using an effcient workflow management system. We present Natrix, an open-source bioinformatics workflow for preprocessing raw amplicon sequencing data. The workflow contains all analysis steps from quality assessment, read assembly, dereplication, chimera detection, split-sample merging, sequence representative assignment (OTUs or ASVs) to the taxonomic assignment of sequence representatives. The workflow is written using Snakemake, a workflow management engine for developing data analysis workflows. In addition, Conda is used for version control. Thus, Snakemake ensures reproducibility and Conda offers version control of the utilized programs. The encapsulation of rules and their dependencies support hassle-free sharing of rules between workflows and easy adaptation and extension of existing workflows. Natrix is freely available on GitHub (https://github.com/MW55/Natrix).


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3889 ◽  
Author(s):  
Robert C. Edgar

Next-generation sequencing of 16S ribosomal RNA is widely used to survey microbial communities. Sequences are typically assigned to Operational Taxonomic Units (OTUs). Closed- and open-reference OTU assignment matches reads to a reference database at 97% identity (closed), then clusters unmatched reads using a de novo method (open). Implementations of these methods in the QIIME package were tested on several mock community datasets with 20 strains using different sequencing technologies and primers. Richness (number of reported OTUs) was often greatly exaggerated, with hundreds or thousands of OTUs generated on Illumina datasets. Between-sample diversity was also found to be highly exaggerated in many cases, with weighted Jaccard distances between identical mock samples often close to one, indicating very low similarity. Non-overlapping hyper-variable regions in 70% of species were assigned to different OTUs. On mock communities with Illumina V4 reads, 56% to 88% of predicted genus names were false positives. Biological inferences obtained using these methods are therefore not reliable.


mSystems ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Nicholas A. Bokulich ◽  
Jai Ram Rideout ◽  
William G. Mercurio ◽  
Arron Shiffer ◽  
Benjamin Wolfe ◽  
...  

ABSTRACT The availability of standard and public mock community data will facilitate ongoing method optimizations, comparisons across studies that share source data, and greater transparency and access and eliminate redundancy. These are also valuable resources for bioinformatics teaching and training. This dynamic resource is intended to expand and evolve to meet the changing needs of the omics community. Mock communities are an important tool for validating, optimizing, and comparing bioinformatics methods for microbial community analysis. We present mockrobiota, a public resource for sharing, validating, and documenting mock community data resources, available at http://caporaso-lab.github.io/mockrobiota/ . The materials contained in mockrobiota include data set and sample metadata, expected composition data (taxonomy or gene annotations or reference sequences for mock community members), and links to raw data (e.g., raw sequence data) for each mock community data set. mockrobiota does not supply physical sample materials directly, but the data set metadata included for each mock community indicate whether physical sample materials are available. At the time of this writing, mockrobiota contains 11 mock community data sets with known species compositions, including bacterial, archaeal, and eukaryotic mock communities, analyzed by high-throughput marker gene sequencing. IMPORTANCE The availability of standard and public mock community data will facilitate ongoing method optimizations, comparisons across studies that share source data, and greater transparency and access and eliminate redundancy. These are also valuable resources for bioinformatics teaching and training. This dynamic resource is intended to expand and evolve to meet the changing needs of the omics community.


2021 ◽  
Author(s):  
Michael E Nelson ◽  
Simone G Riva ◽  
Ann Cvejic

Spatial transcriptomics is revolutionising the study of single-cell RNA and tissue-wide cell heterogeneity, but few robust methods connecting spatially resolved cells to so-called marker genes from single-cell RNA sequencing, which generate significant insight gleaned from spatial methods, exist. Here we present SMaSH, a general computational framework for extracting key marker genes from single-cell RNA sequencing data for spatial transcriptomics approaches. SMaSH extracts robust and biologically well-motivated marker genes, which characterise the given data-set better than existing and limited computational approaches for global marker gene calculation.


Sign in / Sign up

Export Citation Format

Share Document