scholarly journals The northernmost occurrence of Chelydra serpentina in the eastern US during the Pleistocene

Author(s):  
Chase Brownstein

The snapping turtle species Chelydra serpentina, which has a wide range across North America, is extremely tolerant to cold and even freezing conditions. Here, I describe a single caudal vertebrae referred to Chelydra serpentina from the Late Pleistocene of New Jersey which represents the northernmost known occurrence of the species in eastern North America and the closest known occurrence of the species to a glacier or ice sheet in the continent during the Pleistocene. The specimen, which was collected at Ramanessin Brook in Holmdel, New Jersey, affirms that the Pleistocene deposits which line the banks of the popular Cretaceous site are not taphonomically biased to preserving larger fossils and in the future may yield an assemblage of small vertebrates.

2016 ◽  
Author(s):  
Chase Brownstein

The snapping turtle species Chelydra serpentina, which has a wide range across North America, is extremely tolerant to cold and even freezing conditions. Here, I describe a single caudal vertebrae referred to Chelydra serpentina from the Late Pleistocene of New Jersey which represents the northernmost known occurrence of the species in eastern North America and the closest known occurrence of the species to a glacier or ice sheet in the continent during the Pleistocene. The specimen, which was collected at Ramanessin Brook in Holmdel, New Jersey, affirms that the Pleistocene deposits which line the banks of the popular Cretaceous site are not taphonomically biased to preserving larger fossils and in the future may yield an assemblage of small vertebrates.


1982 ◽  
Vol 60 (10) ◽  
pp. 1928-1937 ◽  
Author(s):  
L. Hume ◽  
P. B. Cavers

Populations of Rumex crispus were sampled from eastern North America and Europe. The relative amounts of genetic variation and plasticity were examined, using 58 plant characters. About 61% of the total variation occurring in the experimental plants was accounted for by plasticity. The remaining 26% and 13% occurred within populations and among widespread populations, respectively. At the local level, there was little difference between variation occurring within genotypes and that within families (between maternal siblings). This suggests that the species is predominantly inbreeding. The majority of genetic variation occurs within populations at both the local and species' range levels.It was concluded that the species has large amounts of both flexibility and genetic heterogeneity. This adaptive strategy enables the species to survive under a very wide range of environmental situations and largely accounts for its becoming one of the most widely distributed plants in the world.


2019 ◽  
Vol 6 (11) ◽  
pp. 191206 ◽  
Author(s):  
Chase Doran Brownstein

The faunal changes that occurred in the few million years before the Cretaceous–Palaeogene extinction are of much interest to vertebrate palaeontologists. Western North America preserves arguably the best fossil record from this time, whereas terrestrial vertebrate fossils from the eastern portion of the continent are usually limited to isolated, eroded postcranial remains. Examination of fragmentary specimens from the American east, which was isolated for the majority of the Cretaceous as the landmass Appalachia, is nonetheless important for better understanding dinosaur diversity at the end of the Mesozoic. Here, I report on two theropod teeth from the Mount Laurel Formation, a lower-middle Maastrichtian unit from northeastern North America. One of these preserves in detail the structure of the outer enamel and resembles the dentition of the tyrannosauroid Dryptosaurus aquilunguis among latest Cretaceous forms in being heavily mediolaterally compressed and showing many moderately developed enamel crenulations. Along with previously reported tyrannosauroid material from the Mt Laurel and overlying Cretaceous units, this fossil supports the presence of non-tyrannosaurid tyrannosauroids in the Campanian–Maastrichtian of eastern North America and provides evidence for the hypothesis that the area was still home to relictual vertebrates through the end of the Mesozoic. The other tooth is assignable to a dromaeosaurid and represents both the youngest occurrence of a non-avian maniraptoran in eastern North America and the first from the Maastrichtian reported east of the Mississippi. This tooth, which belonged to a 3–4 m dromaeosaurid based on size comparisons with the teeth of taxa for which skeletons are known, increases the diversity of the Maastrichtian dinosaur fauna of Appalachia. Along with previously reported dromaeosaurid teeth, the Mt Laurel specimen supports the presence of mid-sized to large dromaeosaurids in eastern North America throughout the Cretaceous.


2020 ◽  
Vol 191 (1) ◽  
pp. 180-200
Author(s):  
Chase Doran Brownstein

Abstract The timing of non-avian dinosaur decline is one of the most debated subjects in dinosaur palaeontology. Dinosaur faunas from the last few million years of the Mesozoic appear far less diverse than those from earlier in the Cretaceous, a trend that could suggest non-avian dinosaur extinction occurred gradually. However, the limited nature of the latest Cretaceous dinosaur record outside western North America has obscured patterns in dinosaur diversity just before the extinction. Here, I describe two associated skeletons and several isolated fossils recovered from the New Egypt Formation of New Jersey, a latest Maastrichtian unit that underlies the K–Pg boundary. The larger skeleton appears to be a small-bodied adult from a lineage outside Hadrosauridae, the dominant group of these animals during the Maastrichtian, that persisted along the eastern coast of North America. Smaller specimens are identifiable as juvenile hadrosauromorphs. These results substantiate an important assemblage of herbivorous dinosaurs from the poorly-known Cretaceous of eastern North America. The marine depositional setting for these skeletons demonstrates that proposed ecosystem preferences among hadrosauromorphs may be biased by post-mortem transportation, and the adult skeleton has implications for assessing the proposed relictual nature of Late Cretaceous eastern North American vertebrates.


1997 ◽  
Vol 87 (10) ◽  
pp. 1026-1033 ◽  
Author(s):  
Tobin L. Peever ◽  
Yir-Chung Liu ◽  
Michael G. Milgroom

Double-stranded (ds) RNAs in Cryphonectria parasitica were randomly sampled from nine subpopulations in North America using an antibody-based detection system for dsRNA. dsRNA was detected in 166 (28%) of a total of 595 C. parasitica isolates sampled by immunoblotting. Incidence of dsRNA infection within subpopulations ranged from 0% in samples from New Hampshire and Ontario to 100% in County Line, MI. Most of the dsRNAs sampled were approximately 9 to 13 kb in size. dsRNAs from 72 isolates analyzed by probing Northern blots with 32P-labeled dsRNAs were in one of three hybridization groups. One hybridization group was widespread throughout eastern North America, being found in New York, New Jersey, Maryland, West Virginia, Kentucky, and Michigan. These dsRNAs hybridized to dsRNA from the previously described C. parasitica isolate SR2 from Maryland and are referred to as SR2-type dsRNAs. The second hybridization group was found almost exclusively in Michigan. The Michigan dsRNAs cross-hybridized to Cryphonectria hypovirus 3-GH2 (CHV3-GH2) and are referred to as CHV3-type dsRNAs.One dsRNA sampled from Kentucky hybridized to CHV3-type dsRNAs from Michigan. This dsRNA was probably derived from a fungal isolate that had been intentionally released for biological control at this same site 10 years previously and had become established in Kentucky. The third hybridization group was found only in New Jersey. These dsRNAs were much smaller than all other dsRNAs (3 and 5 kb) and were found in all 11 isolates that were probed; two of these isolates also had SR2-type dsRNA in mixed infections. None of the North American dsRNAs hybridized to CHV1 from Europe, even though CHV1 has been released in numerous locations in eastern North America for biological control of chestnut blight. Similarly, no dsRNAs hybridized to CHV2-NB58, a hypovirus found previously in New Jersey. Mixed infections of SR2-type and CHV3-type dsRNAs were found in 13 of 15 isolates from Frankfort, MI, while another nearby subpopulation (County Line) was infected with only CHV3-type dsRNAs. The distribution of dsRNA hybridization groups in C. parasitica thus presents a mixed picture, since one hybridization group is widespread, whereas two others are primarily restricted to smaller geographic areas.


2012 ◽  
Vol 78 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Chelsea L. Teale ◽  
Norton G. Miller

AbstractSkeletal remains of the extinct American mastodon have often been found with deposits of short, decorticated twigs intermixed with plant fragments presumed to be gastrointestinal or fecal material. If such deposits are digesta, paleobotanical evidence may be used to analyze mastodon foraging strategy, with implications for assessing habitat selection, ecological roles, and response to environmental change. To identify components of mastodon diet in mid-latitude late-Pleistocene boreall forests of eastern North America, plant macrofossils and pollen from a molar socket (Hyde Park site, New York) were compared with dispersed deposits associated with skeletal remains (Hiscock and Chemung sites, New York). Similar macrofossil condition and twig morphology among samples, but difference from a modern boreal fen analog, confirmed the deposits were digesta. Comparison of twigs with material from other paleontological sites and modern elephants suggested dimensions generally indicative of digesta. Picea formed the bulk of each sample but Pinus may have been locally important. Wintertime browsing of Salix and Populus, and springtime consumption of Alnus, were indicated. Evidence for Cyperaceae, Gramineae, and Compositae was ambiguous. If conifers, broadleaf trees, shrubs, and herbs were necessary to fulfill dietary requirements, mastodons would have been nutritionally stressed by rapid late-Pleistocene decrease in vegetational diversity.


2018 ◽  
Author(s):  
Chase D Brownstein

Direct documentation of the ecology of past life is often rare when the fossil record is comparatively poor, as in the case of the terrestrial fauna of the Maastrichtian of eastern North America. Here, I describe a femur and partial tibia shaft assignable to theropods from the Maastrichtian Big Brook locality of New Jersey. The former, identifiable to a previously undetected morphotype of large ornithomimosaur, bears several scrapes identifiable as the feeding traces of sharks, adding to the collection of terrestrial vertebrate remains bearing such marks from the state. The latter is littered with tooth marks and punctures from possibly multiple crocodyliform individuals, the first documented occurrence of such traces on dinosaur bone from the Maastrichtian of the Atlantic Coastal Plain. Additionally, its surface is dotted with likely traces of invertebrates, revealing a microcosm of biological interaction from the Maastrichtian New Jersey shoreline. Previously, the massive Campanian crocodylian taxon Deinosuchus rugosus and the slightly smaller Cenomanian-age Texas crocodyliform Deltasuchus motherali have been shown as important drivers of terrestrial vertebrate taphonomy in eastern North America. The report of crocodyliform bite marks on the ornithomimosaur metatarsal shaft in this manuscript reveals that crocodylians continued to play role in the taphonomy of large dinosaurs in eastern North America through the end of the Mesozoic. The preserved invertebrate traces add to the sparse record of their traces on dinosaur bone, and the presence of shark scrapes on the femur supports the “bloat-and-float” model of terrestrial vertebrate fossil deposition in eastern North America.


Sign in / Sign up

Export Citation Format

Share Document