scholarly journals Geometric properties of quantum graphs and vertex scattering matrices

2010 ◽  
Vol 30 (3) ◽  
pp. 295 ◽  
Author(s):  
Pavel Kurasov ◽  
Marlena Nowaczyk

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michał Ławniczak ◽  
Adam Sawicki ◽  
Małgorzata Białous ◽  
Leszek Sirko

AbstractWe identify and investigate isoscattering strings of concatenating quantum graphs possessing n units and 2n infinite external leads. We give an insight into the principles of designing large graphs and networks for which the isoscattering properties are preserved for $$n \rightarrow \infty $$ n → ∞ . The theoretical predictions are confirmed experimentally using $$n=2$$ n = 2 units, four-leads microwave networks. In an experimental and mathematical approach our work goes beyond prior results by demonstrating that using a trace function one can address the unsettled until now problem of whether scattering properties of open complex graphs and networks with many external leads are uniquely connected to their shapes. The application of the trace function reduces the number of required entries to the $$2n \times 2n $$ 2 n × 2 n scattering matrices $${\hat{S}}$$ S ^ of the systems to 2n diagonal elements, while the old measures of isoscattering require all $$(2n)^2$$ ( 2 n ) 2 entries. The studied problem generalizes a famous question of Mark Kac “Can one hear the shape of a drum?”, originally posed in the case of isospectral dissipationless systems, to the case of infinite strings of open graphs and networks.



2010 ◽  
Vol 828 (3) ◽  
pp. 515-535 ◽  
Author(s):  
V. Caudrelier ◽  
E. Ragoucy


1985 ◽  
Author(s):  
A. Y. Wu ◽  
S. K. Bhaskar ◽  
A. Rosenfeld


1986 ◽  
Author(s):  
James H. Williams ◽  
Nagem Jr. ◽  
Yeung Raymond J. ◽  
Hubert K.


1991 ◽  
Author(s):  
Jerold R. Bottiger
Keyword(s):  




2017 ◽  
Vol 5 (2) ◽  
pp. 73-78
Author(s):  
Jay Prakash Singh ◽  

In this paper author present an investigation of some differential geometric properties of Para-Sasakian manifolds. Condition for a vector field to be Killing vector field in Para-Sasakian manifold is obtained. Mathematics Subject Classification (2010). 53B20, 53C15.



2020 ◽  
pp. 026010602097524
Author(s):  
Darren G Candow ◽  
Philip D Chilibeck ◽  
Julianne Gordon ◽  
Emelie Vogt ◽  
Tim Landeryou ◽  
...  

Background: The combination of creatine supplementation and resistance training (10–12 weeks) has been shown to increase bone mineral content and reduce a urinary indicator of bone resorption in older males compared with placebo. However, the longer-term effects (12 months) of creatine and resistance training on bone mineral density and bone geometric properties in older males is unknown. Aim: To assess the effects of 12 months of creatine supplementation and supervised, whole-body resistance training on bone mineral density, bone geometric properties, muscle accretion, and strength in older males. Methods: Participants were randomized to supplement with creatine ( n = 18, 49–69 years, 0.1 g·kg-1·d-1) or placebo ( n = 20, 49–67 years, 0.1 g·kg-1·d-1) during 12 months of supervised, whole-body resistance training. Results: After 12 months of training, both groups experienced similar changes in bone mineral density and geometry, bone speed of sound, lean tissue and fat mass, muscle thickness, and muscle strength. There was a trend ( p = 0.061) for creatine to increase the section modulus of the narrow part of the femoral neck, an indicator of bone bending strength, compared with placebo. Adverse events did not differ between creatine and placebo. Conclusions: Twelve months of creatine supplementation and supervised, whole-body resistance training had no greater effect on measures of bone, muscle, or strength in older males compared with placebo.



Sign in / Sign up

Export Citation Format

Share Document