scholarly journals GEODESIC MOTION IN THE GLOBALLY REGULAR SPACE-TIME OF A SCHWARZSCHILD BLACK HOLE

1986 ◽  
Vol 35 (6) ◽  
pp. 819
Author(s):  
ZHU SHI-TONG ◽  
SHEN WEN-DA
2021 ◽  
Vol 0 (1) ◽  
pp. 33-38
Author(s):  
G.F. AKHTARYANOVA ◽  
◽  
G.I. NIZAEVA ◽  
R.N. IZMAILOV ◽  
◽  
...  

The equations of general relativity are nonlinear second-order partial differential equations, and, as a consequence, obtaining the exact solutions is a difficult problem. One of the solutions to this problem is to obtain models with a thin self-gravitating shell. This method is used to study most of the phenomena in the theory of gravity, where the reverse effect of matter on the geometry of space-time is a key factor. Another interesting problem that can be studied using the thin shell method is the «simulation» of a black hole. Consider a system consisting of a spherically symmetric Schwarzschild black hole and a thin shell surrounding it, located at a certain fixed distance from the black hole. From the viewpoint of gravitational physics, an observer at infinity is unable to distinguish a real black hole from a wormhole with a thin shell, in which the simulation condition is satisfied. Simulation of a black hole is possible only under sufficiently stringent conditions for the parameters of the model. In particular, the shell needs to be held at a fixed radius. In the general case, such a movement of the shell is non-geodesic, and external forces are required to hold it. The radius of the shell is also a parameter that determines the possibility / impossibility of simulation. In this paper, the radius is found for the case of a Schwarzschild black hole. In particular, the paper considers a model of a wormhole obtained as a result of gluing two space-times: a Schwarzschild black hole and a Damour-Solodukhin wormhole. The latter solution differs from the Schwarzschild black hole in the parameter of the dimensionless real deviation λ and is a twice asymptotically flat regular space-time. It is shown that they can be glued along a given radius. As a result, a thin shell is formed between two glued manifolds consisting of exotic matter. Cases are considered when the thin shell is stable. It turns out that zones corresponding to the «force» constraint are more restrictive than those corresponding to the «mass» constraint.


2018 ◽  
Vol 33 (16) ◽  
pp. 1850098 ◽  
Author(s):  
Ravi Shankar Kuniyal ◽  
Rashmi Uniyal ◽  
Anindya Biswas ◽  
Hemwati Nandan ◽  
K. D. Purohit

We investigate the geodesic motion of massless test particles in the background of a noncommutative geometry-inspired Schwarzschild black hole. The behavior of effective potential is analyzed in the equatorial plane and the possible motions of massless particles (i.e. photons) for different values of impact parameter are discussed accordingly. We have also calculated the frequency shift of photons in this space–time. Further, the mass parameter of a noncommutative inspired Schwarzschild black hole is computed in terms of the measurable redshift of photons emitted by massive particles moving along circular geodesics in equatorial plane. The strength of gravitational fields of noncommutative geometry-inspired Schwarzschild black hole and usual Schwarzschild black hole in General Relativity is also compared.


2005 ◽  
Vol 20 (26) ◽  
pp. 6039-6049 ◽  
Author(s):  
XIN ZHANG

A toy model based upon the q-deformation description for studying the radiation spectrum of black hole is proposed. The starting point is to make an attempt to consider the space–time noncommutativity in the vicinity of black hole horizon. We use a trick that all the space–time noncommutative effects are ascribed to the modification of the behavior of the radiation field of black hole and a kind of q-deformed degrees of freedom are postulated to mimic the radiation particles that live on the noncommutative space–time, meanwhile the background metric is preserved as usual. We calculate the radiation spectrum of Schwarzschild black hole in this framework. The new distribution deviates from the standard thermal spectrum evidently. The result indicates that some correlation effect will be introduced to the system if the noncommutativity is taken into account. In addition, an infrared cutoff of the spectrum is the prediction of the model.


2018 ◽  
Vol 33 (27) ◽  
pp. 1850159 ◽  
Author(s):  
Shad Ali ◽  
Xin-Yang Wang ◽  
Wen-Biao Liu

Christodoulou and Rovelli have shown that the interior volume of a Schwarzschild black hole grows linearly with time. The entropy of a scalar field in this interior volume of a Schwarzschild black hole has been calculated and shown to increase linearly with the advanced time too. In this paper, considering Hawking radiation from a d-dimensional charged black hole, we investigate the proportional relation between the entropy of the scalar field in the interior volume and the Bekenstein–Hawking entropy using the method of our previous work. We also derive this proportionality relation using Hamiltonian analysis and find a consistent result. We then investigate the proportionality coefficient with respect to d and find that it gradually decreases as the dimension of space–time increases.


2012 ◽  
Vol 18 ◽  
pp. 125-129 ◽  
Author(s):  
EDMUNDO M. MONTE

We investigate the topology of Schwarzschild's black holes through the immersion of this space-time in space of higher dimension. Through the immersions of Kasner and Fronsdal we calculate the extension of the Schwarzschilds black hole.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Xiaobo Guo ◽  
Kangkai Liang ◽  
Benrong Mu ◽  
Peng Wang ◽  
Mingtao Yang

Abstract We use the Melnikov method to identify chaotic behavior in geodesic motion perturbed by the minimal length effects around a Schwarzschild black hole. Unlike the integrable unperturbed geodesic motion, our results show that the perturbed homoclinic orbit, which is a geodesic joining the unstable circular orbit to itself, becomes chaotic in the sense that Smale horseshoes chaotic structure is present in phase space.


2013 ◽  
Vol 28 (02) ◽  
pp. 1350007 ◽  
Author(s):  
VLADIMIR N. LUKASH ◽  
VLADIMIR N. STROKOV

We use the phenomenological approach to study properties of space–time in the vicinity of the Schwarzschild black-hole singularity. Requiring finiteness of the Schwarzschild-like metrics we come to the notion of integrable singularity that is, in a sense, weaker than the conventional singularity and allows the (effective) matter to pass to the white-hole region. This leads to a possibility of generating a new universe there. Thanks to the gravitational field of the singularity, this universe is already born highly inflated ("singularity-induced inflation") before the ordinary inflation starts.


Sign in / Sign up

Export Citation Format

Share Document