scholarly journals Analysis of reflection high-energy electron diffraction pattern during SrTiO3 homoepitaxy

2005 ◽  
Vol 54 (1) ◽  
pp. 217
Author(s):  
Wei Xian-Hua ◽  
Zhang Ying ◽  
Li Jin-Long ◽  
Deng Xin-Wu ◽  
Liu Xing-Zhao ◽  
...  
1995 ◽  
Vol 399 ◽  
Author(s):  
G. Teichert ◽  
J. Pezoldt ◽  
V. Cimalla ◽  
O. Nennewitz ◽  
L. Spiess

ABSTRACTRHEED pattern of SiC layers on both (100) and (111)Si grown by carbonization were studied. Different deviations from the single crystalline structure were found ranging from twinning up to changes in the orientation and textured growth. Special attention was drawn on lattice relaxation and morphology evolution during the growth of the formed SiC. Relationships between the occurrence of typical RHEED pattern and the morphology and process parameters are presented.


Author(s):  
L. -M. Peng ◽  
M. J. Whelan

In recent years there has been a trend in the structure determination of reconstructed surfaces to use high energy electron diffraction techniques, and to employ a kinematic approximation in analyzing the intensities of surface superlattice reflections. Experimentally this is motivated by the great success of the determination of the dimer adatom stacking fault (DAS) structure of the Si(111) 7 × 7 reconstructed surface.While in the case of transmission electron diffraction (TED) the validity of the kinematic approximation has been examined by using multislice calculations for Si and certain incident beam directions, far less has been done in the reflection high energy electron diffraction (RHEED) case. In this paper we aim to provide a thorough Bloch wave analysis of the various diffraction processes involved, and to set criteria on the validity for the kinematic analysis of the intensities of the surface superlattice reflections.The validity of the kinematic analysis, being common to both the TED and RHEED case, relies primarily on two underlying observations, namely (l)the surface superlattice scattering in the selvedge is kinematically dominating, and (2)the superlattice diffracted beams are uncoupled from the fundamental diffracted beams within the bulk.


Sign in / Sign up

Export Citation Format

Share Document