scholarly journals On the dimension of an Abelian group

2021 ◽  
Vol 27 (4) ◽  
pp. 267-275
Author(s):  
Timo Tossavainen ◽  
◽  
Pentti Haukkanen ◽  

We introduce a measure of dimensionality of an Abelian group. Our definition of dimension is based on studying perpendicularity relations in an Abelian group. For G ≅ ℤn, dimension and rank coincide but in general they are different. For example, we show that dimension is sensitive to the overall dimensional structure of a finite or finitely generated Abelian group, whereas rank ignores the torsion subgroup completely.

Author(s):  
M. Ferrara ◽  
M. Trombetti

AbstractLet G be an abelian group. The aim of this short paper is to describe a way to identify pure subgroups H of G by looking only at how the subgroup lattice $$\mathcal {L}(H)$$ L ( H ) embeds in $$\mathcal {L}(G)$$ L ( G ) . It is worth noticing that all results are carried out in a local nilpotent context for a general definition of purity.


2011 ◽  
Vol 10 (03) ◽  
pp. 377-389
Author(s):  
CARLA PETRORO ◽  
MARKUS SCHMIDMEIER

Let Λ be a commutative local uniserial ring of length n, p be a generator of the maximal ideal, and k be the radical factor field. The pairs (B, A) where B is a finitely generated Λ-module and A ⊆B a submodule of B such that pmA = 0 form the objects in the category [Formula: see text]. We show that in case m = 2 the categories [Formula: see text] are in fact quite similar to each other: If also Δ is a commutative local uniserial ring of length n and with radical factor field k, then the categories [Formula: see text] and [Formula: see text] are equivalent for certain nilpotent categorical ideals [Formula: see text] and [Formula: see text]. As an application, we recover the known classification of all pairs (B, A) where B is a finitely generated abelian group and A ⊆ B a subgroup of B which is p2-bounded for a given prime number p.


2010 ◽  
Vol 17 (spec01) ◽  
pp. 799-802 ◽  
Author(s):  
Mehri Akhavan-Malayeri

Let W = G ≀ H be the wreath product of G by an n-generator abelian group H. We prove that every element of W′ is a product of at most n+2 commutators, and every element of W2 is a product of at most 3n+4 squares in W. This generalizes our previous result.


2012 ◽  
Vol 14 (03) ◽  
pp. 1250017 ◽  
Author(s):  
LEONARDO CABRER ◽  
DANIELE MUNDICI

An ℓ-groupG is an abelian group equipped with a translation invariant lattice-order. Baker and Beynon proved that G is finitely generated projective if and only if it is finitely presented. A unital ℓ-group is an ℓ-group G with a distinguished order unit, i.e. an element 0 ≤ u ∈ G whose positive integer multiples eventually dominate every element of G. Unital ℓ-homomorphisms between unital ℓ-groups are group homomorphisms that also preserve the order unit and the lattice structure. A unital ℓ-group (G, u) is projective if whenever ψ : (A, a) → (B, b) is a surjective unital ℓ-homomorphism and ϕ : (G, u) → (B, b) is a unital ℓ-homomorphism, there is a unital ℓ-homomorphism θ : (G, u) → (A, a) such that ϕ = ψ ◦ θ. While every finitely generated projective unital ℓ-group is finitely presented, the converse does not hold in general. Classical algebraic topology (à la Whitehead) is combined in this paper with the Włodarczyk–Morelli solution of the weak Oda conjecture for toric varieties, to describe finitely generated projective unital ℓ-groups.


2017 ◽  
Vol 481 ◽  
pp. 327-347 ◽  
Author(s):  
A. Caranti ◽  
F. Dalla Volta

2019 ◽  
Author(s):  
Lachlan Kent ◽  
George Van Doorn ◽  
Britt Klein

This study uses a combined categorical-dimensional approach to depict a hierarchical framework for consciousness similar to, and contiguous with, factorial models of cognition (cf., intelligence). On the basis of the longstanding definition of time consciousness, the analysis employs a dimension of temporal extension, in the same manner that psychology has temporally organised memory (i.e., short-term, long-term, and long-lasting memories). By defining temporal extension in terms of the structure of time perception at short timescales (< 100 s), memory and time consciousness are proposed to fit along the same logarithmic dimension. This suggests that different forms of time consciousness (e.g., experience, wakefulness, and self-consciousness) are embedded within, or supported by, the ascending timescales of different modes of memory (i.e., short-term, long-term, etc.). A secondary dimension is also proposed to integrate higher-order forms of consciousness/emotion and memory/cognition. The resulting two-dimensional structure accords with existing theories of cognitive and emotional intelligence.


Author(s):  
Angelo Bianchi ◽  
Samuel Chamberlin

We investigate the representations of the hyperalgebras associated to the map algebras [Formula: see text], where [Formula: see text] is any finite-dimensional complex simple Lie algebra and [Formula: see text] is any associative commutative unitary algebra with a multiplicatively closed basis. We consider the natural definition of the local and global Weyl modules, and the Weyl functor for these algebras. Under certain conditions, we prove that these modules satisfy certain universal properties, and we also give conditions for the local or global Weyl modules to be finite-dimensional or finitely generated, respectively.


Author(s):  
Günter Harder

This chapter shows that certain classes of Harish-Chandra modules have in a natural way a structure over ℤ. The Lie group is replaced by a split reductive group scheme G/ℤ, its Lie algebra is denoted by 𝖌ℤ. On the group scheme G/ℤ there is a Cartan involution 𝚯 that acts by t ↦ t −1 on the split maximal torus. The fixed points of G/ℤ under 𝚯 is a flat group scheme 𝒦/ℤ. A Harish-Chandra module over ℤ is a ℤ-module 𝒱 that comes with an action of the Lie algebra 𝖌ℤ, an action of the group scheme 𝒦, and some compatibility conditions is required between these two actions. Finally, 𝒦-finiteness is also required, which is that 𝒱 is a union of finitely generated ℤ modules 𝒱I that are 𝒦-invariant. The definitions imitate the definition of a Harish-Chandra modules over ℝ or over ℂ.


1983 ◽  
Vol 35 (1) ◽  
pp. 177-192 ◽  
Author(s):  
P. Hoffman

Below we work out the algebra structure of some Hopf algebras which arise concretely in restricting representations of the symmetric group to certain subgroups. The basic idea generalizes that used by Adams [1] for H*(BSU). The question arose in discussions with H. K. Farahat. I would like to thank him for his interest in the work and to acknowledge the usefulness of several stimulating conversations with him.1. Review and statement of results. A homogeneous element of a graded abelian group will have its gradation referred to as its dimension. In all such groups below there will be no non-zero elements with negative or odd dimension. A graded algebra (resp. coalgebra) will be associative (resp. coassociative), strictly commutative (resp. co-commutative) and in dimension zero will be isomorphic to the ground ring F, providing the unit (resp. counit). We shall deal amost entirely with F = Z or F = Z/p for a prime p; the cases F = 0 or a localization of Z will occur briefly. In every case, the component in each dimension will be a finitely generated free F-module, so dualization works simply.


1970 ◽  
Vol 22 (6) ◽  
pp. 1118-1122 ◽  
Author(s):  
Doyle O. Cutler ◽  
Paul F. Dubois

Let G be a p-primary Abelian group. Recall that the final rank of G is infn∈ω{r(pnG)}, where r(pnG) is the rank of pnG and ω is the first limit ordinal. Alternately, if Γ is the set of all basic subgroups of G, we may define the final rank of G by supB∈Γ {r(G/B)}. In fact, it is known that there exists a basic subgroup B of G such that r(G/B) is equal to the final rank of G. Since the final rank of G is equal to the final rank of a high subgroup of G plus the rank of pωG, one could obtain the same information if the definition of final rank were restricted to the class of p-primary Abelian groups of length ω.


Sign in / Sign up

Export Citation Format

Share Document