scholarly journals A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Nicky Wybouw ◽  
Wannes Dermauw ◽  
Luc Tirry ◽  
Christian Stevens ◽  
Miodrag Grbić ◽  
...  

Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide.

1987 ◽  
Vol 208 (1-2) ◽  
pp. 159-167 ◽  
Author(s):  
Kiyoji Nishiwaki ◽  
Naoyuki Hayashi ◽  
Shinji Irie ◽  
Dong-Hyo Chung ◽  
Satoshi Harashima ◽  
...  

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramona Wördemann ◽  
Lars Wiefel ◽  
Volker F. Wendisch ◽  
Alexander Steinbüchel

AbstractCyanophycin (multi-l-arginyl-poly-l-aspartic acid; also known as cyanophycin grana peptide [CGP]) is a biopolymer that could be used in various fields, for example, as a potential precursor for the synthesis of polyaspartic acid or for the production of CGP-derived dipeptides. To extend the applications of this polymer, it is therefore of interest to synthesize CGP with different compositions. A recent re-evaluation of the CGP synthesis in C. glutamicum has shown that C. glutamicum is a potentially interesting microorganism for CGP synthesis with a high content of alternative amino acids. This study shows that the amount of alternative amino acids can be increased by using mutants of C. glutamicum with altered amino acid biosynthesis. With the DM1729 mutant, the lysine content in the polymer could be increased up to 33.5 mol%. Furthermore, an ornithine content of up to 12.6 mol% was achieved with ORN2(Pgdh4). How much water-soluble or insoluble CGP is synthesized is strongly related to the used cyanophycin synthetase. CphADh synthesizes soluble CGP exclusively. However, soluble CGP could also be isolated from cells expressing CphA6308Δ1 or CphA6308Δ1_C595S in addition to insoluble CGP in all examined strains. The point mutation in CphA6308Δ1_C595S partially resulted in a higher lysine content. In addition, the CGP content could be increased to 36% of the cell dry weight under optimizing growth conditions in C. glutamicum ATCC13032. All known alternative major amino acids for CGP synthesis (lysine, ornithine, citrulline, and glutamic acid) could be incorporated into CGP in C. glutamicum.


2002 ◽  
Vol 99 (5) ◽  
pp. 2678-2683 ◽  
Author(s):  
B. Min ◽  
J. T. Pelaschier ◽  
D. E. Graham ◽  
D. Tumbula-Hansen ◽  
D. Soll

Sign in / Sign up

Export Citation Format

Share Document