Dependence of MS2 and T4 phage growth upon host amino acid biosynthesis during infections of Escherichia coli

Virology ◽  
1986 ◽  
Vol 150 (1) ◽  
pp. 313-317 ◽  
Author(s):  
Mumtaz Rojiani ◽  
Emanuel Goldman
1999 ◽  
Vol 289 (4) ◽  
pp. 991-1002 ◽  
Author(s):  
Andrea Hadfield ◽  
Gitay Kryger ◽  
Jun Ouyang ◽  
Gregory A. Petsko ◽  
Dagmar Ringe ◽  
...  

2017 ◽  
Vol 200 (2) ◽  
Author(s):  
Daniel E. Vega ◽  
William Margolin

ABSTRACTZipA is essential for cell division inEscherichia coli, acting early in the process to anchor polymers of FtsZ to the cytoplasmic membrane. Along with FtsA, FtsZ and ZipA form a proto-ring at midcell that recruits additional proteins to eventually build the division septum. Cells carrying the thermosensitivezipA1allele divide fairly normally at 30°C in rich medium but cease dividing at temperatures above 34°C, forming long filaments. In a search for suppressors of thezipA1allele, we found that deletions of specific genes involved in amino acid biosynthesis could partially rescue cell growth and division at 34°C or 37°C but not at 42°C. Notably, although a diverse group of amino acid biosynthesis gene deletions could partially rescue the growth ofzipA1cells at 34°C, only deletions of genes related to the biosynthesis of threonine, glycine, serine, and methionine could rescue growth at 37°C. Adding exogenous pyridoxal 5-phosphate (PLP), a cofactor for many of the enzymes affected by this study, partially suppressedzipA1mutant thermosensitivity. For many of the deletions, PLP had an additive rescuing effect on thezipA1mutant. Moreover, added PLP partially suppressed the thermosensitivity offtsQandftsKmutants and weakly suppressed anftsImutant, but it failed to suppressftsAorftsZthermosensitive mutants. Along with the ability of a deletion ofmetCto partially suppress theftsKmutant, our results suggest that perturbations of amino acid metabolic pathways, particularly those that redirect the flow of carbon away from the synthesis of threonine, glycine, or methionine, are able to partially rescue some cell division defects.IMPORTANCECell division of bacteria, such asEscherichia coli, is essential for their successful colonization. It is becoming increasingly clear that nutritional status and central metabolism can affect bacterial size and shape; for example, a metabolic enzyme (OpgH) can moonlight as a regulator of FtsZ, an essential cell division protein. Here, we demonstrate a link between amino acid metabolism and ZipA, another essential cell division protein that binds directly to FtsZ and tethers it to the cytoplasmic membrane. Our evidence suggests that altering flux through the methionine-threonine-glycine-serine pathways and supplementing with the enzyme cofactor pyridoxal-5-phosphate can partially compensate for an otherwise lethal defect in ZipA, as well as several other cell division proteins.


2005 ◽  
Vol 187 (13) ◽  
pp. 4362-4371 ◽  
Author(s):  
Nina L. Tuite ◽  
Katy R. Fraser ◽  
Conor P. O'Byrne

ABSTRACT In Escherichia coli the sulfur-containing amino acid homocysteine (Hcy) is the last intermediate on the methionine biosynthetic pathway. Supplementation of a glucose-based minimal medium with Hcy at concentrations greater than 0.2 mM causes the growth of E. coli Frag1 to be inhibited. Supplementation of Hcy-treated cultures with combinations of branched-chain amino acids containing isoleucine or with isoleucine alone reversed the inhibitory effects of Hcy on growth. The last intermediate of the isoleucine biosynthetic pathway, α-keto-β-methylvalerate, could also alleviate the growth inhibition caused by Hcy. Analysis of amino acid pools in Hcy-treated cells revealed that alanine, valine, and glutamate levels are depleted. Isoleucine could reverse the effects of Hcy on the cytoplasmic pools of valine and alanine. Supplementation of the culture medium with alanine gave partial relief from the inhibitory effects of Hcy. Enzyme assays revealed that the first step of the isoleucine biosynthetic pathway, catalyzed by threonine deaminase, was sensitive to inhibition by Hcy. The gene encoding threonine deaminase, ilvA, was found to be transcribed at higher levels in the presence of Hcy. Overexpression of the ilvA gene from a plasmid could overcome Hcy-mediated growth inhibition. Together, these data indicate that in E. coli Hcy toxicity is caused by a perturbation of branched-chain amino acid biosynthesis that is caused, at least in part, by the inhibition of threonine deaminase.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0215777
Author(s):  
Natalia V. Geraskina ◽  
Elena V. Sycheva ◽  
Valery V. Samsonov ◽  
Natalia S. Eremina ◽  
Christine D. Hook ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document